988 resultados para neutron zerfall MAC-E-Filter CKM-Matrix
Resumo:
This paper investigates the use of a particle filter for data assimilation with a full scale coupled ocean–atmosphere general circulation model. Synthetic twin experiments are performed to assess the performance of the equivalent weights filter in such a high-dimensional system. Artificial 2-dimensional sea surface temperature fields are used as observational data every day. Results are presented for different values of the free parameters in the method. Measures of the performance of the filter are root mean square errors, trajectories of individual variables in the model and rank histograms. Filter degeneracy is not observed and the performance of the filter is shown to depend on the ability to keep maximum spread in the ensemble.
Resumo:
We develop a new governance perspective on port–hinterland linkages and related port impacts. Many stakeholders in a port’s hinterland now demand tangible economic benefits from port activities, as a precondition for supporting port expansion and infrastructural investments. We use a governance lens to assess this farsighted contracting challenge. We find that most contemporary economic impact assessments of port investment projects pay scant attention to the contractual relationship challenges in port-hinterland relationships. In contrast, we focus explicitly on the spatial distribution of such impacts and the related contractual relationship issues facing port authorities or port users and their stakeholders in the port hinterland. We introduce a new concept, the Port Hinterland Impact (PHI) matrix, which focuses explicitly on the spatial distribution of port impacts and related contractual relationship challenges. The PHI matrix offers insight into port impacts using two dimensions: logistics dedicatedness, as an expression of Williamsonian asset specificity in the sphere of logistics contractual relationships, and geographic reach, with a longer reach typically reflecting the need for more complex contacting to overcome ‘distance’ challenges with external stakeholders. We use the PHI matrix in our empirical, governance-based analysis of contractual relationships between the port authorities in Antwerp and Zeebrugge, and their respective stakeholders.
Resumo:
Variable-temperature powder neutron diffraction data reveal that Co3Sn2S2 crystallizes in the shandite structure (space group R (3) over barm, a = 5.36855(3)angstrom, c = 13.1903(1) angstrom at 300 K). The structural relationship between Co3Sn2S2 and the intermetallic compound CoSn, both of which contain Kagome nets of cobalt atoms, is discussed. Resistivity and Seebeck coefficient measurements for Co3Sn2S2 are consistent with metallic behaviour. Magnetic susceptibility measurements indicate that Co3Sn2S2 orders ferromagnetically at 180(10) K, with a saturation moment of 0.29 mu(B) per cobalt atom at 5 K. The onset of magnetic ordering is accompanied by marked anomalies in the electrical transport properties. (c) 2008 Elsevier Masson SAS. All rights reserve
Resumo:
Cell migration is a highly coordinated process and any aberration in the regulatory mechanisms could result in pathological conditions such as cancer. The ability of cancer cells to disseminate to distant sites within the body has made it difficult to treat. Cancer cells also exhibit plasticity that makes them able to interconvert from an elongated, mesenchymal morphology to an amoeboid blebbing form under different physiological conditions. Blebs are spherical membrane protrusions formed by actomyosin-mediated contractility of cortical actin resulting in increased hydrostatic pressure and subsequent detachment of the membrane from the cortex. Tumour cells use blebbing as an alternative mode of migration by squeezing through preexisting gaps in the ECM, and bleb formation is believed to be mediated by the Rho-ROCK signaling pathway. However, the involvement of transmembrane water and ion channels in cell blebbing has not been examined. In the present study, the role of the transmembrane water channels, aquaporins, transmembrane ion transporters and lipid signaling enzymes in the regulation of blebbing was investigated. Using 3D matrigel matrix as an in vitro model to mimic normal extracellular matrix, and a combination of confocal and time-lapse microscopy, it was found that AQP1 knockdown by siRNA ablated blebbing of HT1080 and ACHN cells, and overexpression of AQP1-GFP not only significantly increased bleb size with a corresponding decrease in bleb numbers, but also induced bleb formation in non-blebbing cell lines. Importantly, AQP1 overexpression reduces bleb lifespan due to faster bleb retraction. This novel finding of AQP1-facilitated bleb retraction requires the activity of the Na+/H+ pump as inhibition of the ion transporter, which was found localized to intracellular vesicles, blocked bleb retraction in both cell lines. This study also demonstrated that a differential regulation of cell blebbing by AQP isoforms exists as knockdown of AQP5 had no effect on bleb formation. Data from this study also demonstrates that the lipid signaling PLD2 signals through PA in the LPA-LPAR-Rho-ROCK axis to positively regulate bleb formation in both cell lines. Taken together, this work provides a novel role of AQP1 and Na+/H+ pump in regulation of cell blebbing, and this could be exploited in the development of new therapy to treat cancer.
Resumo:
Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes. However, few studies consider the influence of different types of semi-natural and linear habitats in the matrix, despite their known ecological value for biodiversity. Objective To investigate the importance of the composition and configuration of matrix habitats for woodland carabid communities and identify whether specific landscape features can help to maintain long-term populations in wooded-agricultural environments. Methods Carabids were sampled from woodlands in 36 tetrads of 4 km2 across southern Britain. Landscape heterogeneity including an innovative representation of linear habitats was quantified for each tetrad. Carabid community response was analysed using ordination methods combined with variation partitioning and additional response trait analyses. Results Woodland carabid community response was trait-specific and better explained by simultaneously considering the composition and configuration of matrix habitats. Semi-natural and linear features provided significant refuge habitat and functional connectivity. Mature hedgerows were essential for slow-dispersing carabids in fragmented landscapes. Species commonly associated with heathland were correlated with inland water and woodland patches despite widespread heathland conversion to agricultural land, suggesting that species may persist for some decades when elements representative of the original habitat are retained following landscape modification. Conclusions Semi-natural and linear habitats have high biodiversity value. Landowners should identify features that can provide additional resources or functional connectivity for species relative to other habitat types in the landscape matrix. Agri-environment options should consider landscape heterogeneity to identify the most efficacious changes for biodiversity.
Resumo:
A truly variance-minimizing filter is introduced and its per for mance is demonstrated with the Korteweg– DeV ries (KdV) equation and with a multilayer quasigeostrophic model of the ocean area around South Africa. It is recalled that Kalman-like filters are not variance minimizing for nonlinear model dynamics and that four - dimensional variational data assimilation (4DV AR)-like methods relying on per fect model dynamics have dif- ficulty with providing error estimates. The new method does not have these drawbacks. In fact, it combines advantages from both methods in that it does provide error estimates while automatically having balanced states after analysis, without extra computations. It is based on ensemble or Monte Carlo integrations to simulate the probability density of the model evolution. When obser vations are available, the so-called importance resampling algorithm is applied. From Bayes’ s theorem it follows that each ensemble member receives a new weight dependent on its ‘ ‘distance’ ’ t o the obser vations. Because the weights are strongly var ying, a resampling of the ensemble is necessar y. This resampling is done such that members with high weights are duplicated according to their weights, while low-weight members are largely ignored. In passing, it is noted that data assimilation is not an inverse problem by nature, although it can be for mulated that way . Also, it is shown that the posterior variance can be larger than the prior if the usual Gaussian framework is set aside. However , i n the examples presented here, the entropy of the probability densities is decreasing. The application to the ocean area around South Africa, gover ned by strongly nonlinear dynamics, shows that the method is working satisfactorily . The strong and weak points of the method are discussed and possible improvements are proposed.
Resumo:
This paper discusses an important issue related to the implementation and interpretation of the analysis scheme in the ensemble Kalman filter . I t i s shown that the obser vations must be treated as random variables at the analysis steps. That is, one should add random perturbations with the correct statistics to the obser vations and generate an ensemble of obser vations that then is used in updating the ensemble of model states. T raditionally , this has not been done in previous applications of the ensemble Kalman filter and, as will be shown, this has resulted in an updated ensemble with a variance that is too low . This simple modification of the analysis scheme results in a completely consistent approach if the covariance of the ensemble of model states is interpreted as the prediction error covariance, and there are no further requirements on the ensemble Kalman filter method, except for the use of an ensemble of sufficient size. Thus, there is a unique correspondence between the error statistics from the ensemble Kalman filter and the standard Kalman filter approach
Resumo:
The ring-shedding process in the Agulhas Current is studied using the ensemble Kalman filter to assimilate geosat altimeter data into a two-layer quasigeostrophic ocean model. The properties of the ensemble Kalman filter are further explored with focus on the analysis scheme and the use of gridded data. The Geosat data consist of 10 fields of gridded sea-surface height anomalies separated 10 days apart that are added to a climatic mean field. This corresponds to a huge number of data values, and a data reduction scheme must be applied to increase the efficiency of the analysis procedure. Further, it is illustrated how one can resolve the rank problem occurring when a too large dataset or a small ensemble is used.
Resumo:
Nickel cyanide is a layered material showing markedly anisotropic behaviour. High-pressure neutron diffraction measurements show that at pressures up to 20.1 kbar, compressibility is much higher in the direction perpendicular to the layers, c, than in the plane of the strongly chemically bonded metal-cyanide sheets. Detailed examination of the behaviour of the tetragonal lattice parameters, a and c, as a function of pressure reveal regions in which large changes in slope occur, for example, in c(P) at 1 kbar. The experimental pressure dependence of the volume data is fitted to a bulk modulus, B0, of 1050 (20) kbar over the pressure range 0–1 kbar, and to 124 (2) kbar over the range 1–20.1 kbar. Raman spectroscopy measurements yield additional information on how the structure and bonding in the Ni(CN)2 layers change with pressure and show that a phase change occurs at about 1 kbar. The new high-pressure phase, (Phase PII), has ordered cyanide groups with sheets of D4h symmetry containing Ni(CN)4 and Ni(NC)4 groups. The Raman spectrum of phase PII closely resembles that of the related layered compound, Cu1/2Ni1/2(CN)2, which has previously been shown to contain ordered C≡N groups. The phase change, PI to PII, is also observed in inelastic neutron scattering studies which show significant changes occurring in the phonon spectra as the pressure is raised from 0.3 to 1.5 kbar. These changes reflect the large reduction in the interlayer spacing which occurs as Phase PI transforms to Phase PII and the consequent increase in difficulty for out-of-plane atomic motions. Unlike other cyanide materials e.g. Zn(CN)2 and Ag3Co(CN)6, which show an amorphization and/or a decomposition at much lower pressures (~100 kbar), Ni(CN)2 can be recovered after pressurising to 200 kbar, albeit in a more ordered form.
Resumo:
The congruential rule advanced by Graves for polarization basis transformation of the radar backscatter matrix is now often misinterpreted as an example of consimilarity transformation. However, consimilarity transformations imply a physically unrealistic antilinear time-reversal operation. This is just one of the approaches found in literature to the description of transformations where the role of conjugation has been misunderstood. In this paper, the different approaches are examined in particular in respect to the role of conjugation. In order to justify and correctly derive the congruential rule for polarization basis transformation and properly place the role of conjugation, the origin of the problem is traced back to the derivation of the antenna height from the transmitted field. In fact, careful consideration of the role played by the Green’s dyadic operator relating the antenna height to the transmitted field shows that, under general unitary basis transformation, it is not justified to assume a scalar relationship between them. Invariance of the voltage equation shows that antenna states and wave states must in fact lie in dual spaces, a distinction not captured in conventional Jones vector formalism. Introducing spinor formalism, and with the use of an alternate spin frame for the transmitted field a mathematically consistent implementation of the directional wave formalism is obtained. Examples are given comparing the wider generality of the congruential rule in both active and passive transformations with the consimilarity rule.
Resumo:
The combined application of neutron reflectometry (NR) and ellipsometry to determine the oxidation kinetics of organic monolayers at the air–water interface is described for the first time. This advance was possible thanks to a new miniaturised reaction chamber that is compatible with the two techniques and has controlled gas delivery. The rate coefficient for the oxidation of methyl oleate monolayers by gas-phase O3 determined using NR is (5.4 ± 0.6) × 10−10 cm2 per molecule per s, which is consistent with the value reported in the literature but is now better constrained. This highlights the potential for the investigation of faster atmospheric reactions in future studies. The rate coefficient determined using ellipsometry is (5.0 ± 0.9) × 10−10 cm2 per molecule per s, which indicates the potential of this more economical, laboratory-based technique to be employed in parallel with NR. In this case, temporal fluctuations in the optical signal are attributed to the mobility of islands of reaction products. We outline how such information may provide critical missing information in the identification of transient reaction products in a range of atmospheric surface reactions in the future.
Resumo:
Filter degeneracy is the main obstacle for the implementation of particle filter in non-linear high-dimensional models. A new scheme, the implicit equal-weights particle filter (IEWPF), is introduced. In this scheme samples are drawn implicitly from proposal densities with a different covariance for each particle, such that all particle weights are equal by construction. We test and explore the properties of the new scheme using a 1,000-dimensional simple linear model, and the 1,000-dimensional non-linear Lorenz96 model, and compare the performance of the scheme to a Local Ensemble Kalman Filter. The experiments show that the new scheme can easily be implemented in high-dimensional systems and is never degenerate, with good convergence properties in both systems.
Resumo:
Human functional imaging provides a correlative picture of brain activity during pain. A particular set of central nervous system structures (eg, the anterior cingulate cortex, thalamus, and insula) consistently respond to transient nociceptive stimuli causing pain. Activation of this so-called pain matrix or pain signature has been related to perceived pain intensity, both within and between individuals,1,2 and is now considered a candidate biomarker for pain in medicolegal settings and a tool for drug discovery. The pain-specific interpretation of such functional magnetic resonance imaging (fMRI) responses, although logically flawed,3,4 remains pervasive. For example, a 2015 review states that “the most likely interpretation of activity in the pain matrix seems to be pain.”4 Demonstrating the nonspecificity of the pain matrix requires ruling out the presence of pain when highly salient sensory stimuli are presented. In this study, we administered noxious mechanical stimuli to individuals with congenital insensitivity to pain and sampled their brain activity with fMRI. Loss-of-function SCN9A mutations in these individuals abolishes sensory neuron sodium channel Nav1.7 activity, resulting in pain insensitivity through an impaired peripheral drive that leaves tactile percepts fully intact.5 This allows complete experimental disambiguation of sensory responses and painful sensations