917 resultados para nanotubes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palladium and bimetallic Pd–Ni nanoparticles (NPs) protected by polyvinylpyrrolidone were prepared by the reduction-by-solvent method and deposited on multiwalled carbon nanotubes (MWCNTs). The catalytic activity of these NPs to carbon–carbon bond-forming reactions was studied by using 0.1 mol % Pd loading, at 120 °C for 1 h and water as a solvent under ligand-free conditions. The Suzuki–Miyaura reaction took place quantitatively for the cross-coupling of 4-bromoanisole with phenylboronic acid, better than those obtained with potassium phenyltrifluoroborate, with Pd50Ni50/MWCNTs as a catalyst and K2CO3 as a base and TBAB as an additive, with good recyclability during 4 cycles with some Ni leaching. The Hiyama reaction of 4-iodoanisole with trimethoxyphenylsilane, under fluoride-free conditions using 50 % aqueous NaOH solution, was performed with Pd/MWCNTs as a catalyst in 83 % yield with low recyclability. For the Mizoroki-Heck reaction 4-iodoanisole and styrene gave the corresponding 4-methoxystilbene quantitatively with Pd50Ni50/MWCNTs using K2CO3 as a base and TBAB as an additive although the recycle failed. In the case of the Sonogashira-Hagihara reaction, Pd/MWCNTs had to be used as a catalyst and pyrrolidine as a base for the coupling of 4-iodoanisole with phenylacetylene under copper-free conditions. The corresponding 4-methoxytolane was quantitatively obtained allowing the recycling of the catalyst during 3 cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functionalized carbon nanotubes (CNTs) using three aminobenzene acids with different functional groups (carboxylic, sulphonic, phosphonic) in para position have been synthesized through potentiodynamic treatment in acid media under oxidative conditions. A noticeable increase in the capacitance for the functionalized carbon nanotubes mainly due to redox processes points out the formation of an electroactive polymer thin film on the CNTs surface along with covalently bonded functionalities. The CNTs functionalized using aminobenzoic acid rendered the highest capacitance values and surface nitrogen content, while the presence of sulfur and/or phosphorus groups in the aminobenzene structure yielded a lower functionalization degree. The oxygen reduction reaction (ORR) activity of the functionalized samples was similar to that of the parent CNTs, independently of the functional group present in the aminobenzene acid. Interestingly, a heat treatment in N2 atmosphere with a very low O2 concentration (3125 ppm) at 800 °C of the CNTs functionalized with aminobenzoic acid produced a material with high amounts of surface oxygen and nitrogen groups (12 and 4% at., respectively), that seem to modulate the electron-donor properties of the resulting material. The onset potential and limiting current for ORR was enhanced for this material. These are promising results that validates the use of electrochemistry for the synthesis of novel N-doped electrocatalysts for ORR in combination with adequate heat treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared and X-ray photoelectron spectroscopy and ICP-OES. It was observed that the synthesis of Pd nanoparticles employing ethylene glycol resulted in metallic palladium particles of smaller size compared to those prepared by the impregnation method and similar for both supports. The presence of oxygen groups on the support surface favored the activity and diminished the selectivity. It seems that ethylene glycol reacted with the surface groups of GO, this favoring the selectivity. The activity was higher over the CNT-based catalysts and both catalysts prepared by reduction in ethylene glycol were quite stable upon recycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the synthesis of palladium nanoparticles over carbon nanotubes (Pd/CNT) and graphene (Pd/G) and we have tested their catalytic performance in the liquid phase chemoselective hydrogenation of para-chloronitrobenzene at room temperature. The catalysts were characterized by N2 adsorption/desorption isotherms, TEM, X-ray diffraction, infrared and X-ray photoelectron spectroscopy and ICP-OES. The palladium particle size on Pd/G (3.4 nm) and Pd/CNT (2.8 nm) was similar though the deposition was higher on Pd/G. Pd/CNT was more active which can be ascribed to the different surface area and electronic properties of the Pd nanoparticles over CNT, while the selectivity was 100% to the corresponding haloaniline over both catalysts and they were quite stable upon recycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An active hydrogenation Pd complex has been immobilised by impregnation on CNTs submitted to several treatments that lead to important differences in their surface chemistry and in the proportion of tubes with both ends open. Most of the hybrid catalysts are more active than the complex in homogeneous phase, but the support properties have an important impact in the catalytic activity. In general, the more developed the surface chemistry, the lower the activity. However, when CNTs are open at both ends, the Pd complex can enter the tubular cavity and an important enhancement of the catalytic activity due to a confinement effect is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic neat and N-doped carbon nanotubes with different properties have been synthesized by chemical vapour deposiüon and tested in the catalytic wet peroxide oxidation of 4-nitrophenol solutions (5 g L') at relatively mild operating conditions (atmospheric pressure, T = 50 °C, pH = 3)~using a catalyst load = 2.5 g L-' and [H202]o = 17.8 g L-1. The results demonstrate that the catalyst hydrophobicity/ hydrophilicity is a detenninant property in the CWPO reaction, since it affects the rate ofH202 decomposition. The controlled formation ofreactive radicais (HO* and HOO*) at hydrophobic surfaces avoids the formation of non-reactive species (02 and H20), increasing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strategy for a simple dispersion of commercial multi-walled carbon nanotubes (MWCNTs) using two organosilicones, polycarbosilane SMP10 and polysilazane Ceraset PSZ20, in organic solvents such as cyclohexane, tetrahydrofuran (THF), m-xylene and chloroform is presented. In just a few minutes the combined action of sonication and the presence of Pt(0) catalyst is sufficient to obtain a homogeneous suspension, thanks to the rapid hydrosilylation reaction between SiH groups of the polymer and the CNT sidewall. The as-produced suspensions have a particle size distribution <1μm and remain unchanged after several months. A maximum of 0.47 and 0.50mg/ml was achieved, respectively, for Ceraset in THF and SMP10 in chloroform. Possible applications as polymeric and ceramic thin films or aerogels are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine here the relative importance of different contributions to transport of light gases in single walled carbon nanotubes, using methane and hydrogen as examples. Transport coefficients at 298 K are determined using molecular dynamics simulation with atomistic models of the nanotube wall, from which the diffusive and viscous contributions are resolved using a recent approach that provides an explicit expression for the latter. We also exploit an exact theory for the transport of Lennard-Jones fluids at low density considering diffuse reflection at the tube wall, thereby permitting the estimation of Maxwell coefficients for the wall reflection. It is found that reflection from the carbon nanotube wall is nearly specular, as a result of which slip flow dominates, and the viscous contribution is small in comparison, even for a tube as large as 8.1 nm in diameter. The reflection coefficient for hydrogen is 3-6 times as large as that for methane in tubes of 1.36 nm diameter, indicating less specular reflection for hydrogen and greater sensitivity to atomic detail of the surface. This reconciles results showing that transport coefficients for hydrogen and methane, obtained in simulation, are comparable in tubes of this size. With increase in adsorbate density, the reflection coefficient increases, suggesting that adsorbate interactions near the wall serve to roughen the local potential energy landscape perceived by fluid molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific surface area (SSA) of single-walled carbon nanotubes (SWNTs) has been measured by different groups. Fujiwara et al. measured the SSA of SWNT bundles by using nitrogen and oxygen as adsorbates, and found that the SSA from O2-adsorption was 6.6% larger than that from N2-adsorption for the same SWNT sample [1]. Also Wei et al. [2] measured the SSA of HiPco SWNTs by using O2, N2 and Ar, and found that, for the same samples, Vm(Ar) > Vm(O2) > Vm(N2), here Vm is the monolayer adsorption capacity at the standard conditions of temperature and pressure (STP). Those research results indicate that, for the same SWNT sample, its measured surface area depends on the employed adsorbate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The defect effect on hydrogen adsorption on single-walled carbon nanotubes (SWNTs) has been studied by using extensive molecular dynamics simulations and density functional theory (DFT) calculations. It indicates that the defects created on the exterior wall of the SWNTs by bombarding the tube wall with carbon atoms and C-2 dimers at a collision energy of 20 eV can enhance the hydrogen adsorption potential of the SWNTs substantially. The average adsorption energy for a H-2 molecule adsorbed on the exterior wall of a defected (10,10) SWNT is similar to 150 meV, while that for a H-2 molecule adsorbed on the exterior wall of a perfect (10,10) SWNT is similar to 104 meV. The H-2 sticking coefficient is very sensitive to temperature, and has a maximum value around 70 to 90 K. The electron density contours, the local density of states, and the electron transfers obtained from the DFT calculations clearly indicate that the H-2 molecules are all physisorbed on the SWNTs. At temperatures above 200 K, most of the H-2 molecules adsorbed on the perfect SWNT are soon desorbed, but the H-2 molecules can still remain on the defected SWNTs at 300 K. The detailed processes of H-2 molecules adsorbing on and desorbing from the (10,10) SWNTs are demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential energies of van der Waals (VDW) interactions between two parallel, infinitely long and perfect SWNTs with identical, and different sizes were studied based on the continuum Lennard-Jones model. The conclusion of Girifalco's work on (n, n) SWNTs that the potentials of SWNT-SWNT fell on a single curve, is also applicable to SWNTs with different sizes. We further obtained the corresponding constants of the well depth phi(0) and equilibrium VDW gap g(0) for SWNTs with a radius from 2 to 25 Angstrom. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To describe single-walled carbon nanotube (SWNT) arrays, we propose a self-similar array model. For isolated SWNT bundles, the self-similar array model is consistent with the classical triangular array model; for SWNT bundle arrays, it can present hierarchy structures and specify different array configurations. Based on this self-similar array model, we calculated the energetics of SWNT arrays, investigated the driving force for the formation of macroscopic SWNT arrays, and briefly discussed the hierarchy structures in real macroscopic SWNT arrays. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double- walled carbon nanotubes (DWNTs) were synthesized used carbon black as the dot carbon source by a semi-continuous hydrogen arc discharge process. High-resolution transmission electron microscopy (HRTEM) observations revealed that most of the tubes were DWNTs with outer and inner diameters in the range of 2.67 - 4 nm and 1.96 - 3.21 nm, respectively. Most of the DWNTs were in a bundle form of about 10 - 30 nm in diameter with high purity ( about 70%) from thermal gravimetric analysis (TGA), resonant laser Raman spectroscopy, scanning electron microscopy (SEM) and TEM characterizations. It was found that carbon black as the dot carbon source could be easy controlled to synthesize one type of nanotube. A simple process combining oxidation and acid treatment to purify the DWNT bundles was used without damaging the bundles. The structure of carbon black, as the key element for influencing purity, bundle formation and purification of DWNTs, is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The van der Waals (vdW) interactions between carbon nanotubes (CNTs) were studied based on the continuum Lennard-Jones model. It was found that all the vdW potentials between two arbitrary CNTs fall on the same curve when plotted in terms of certain reduced parameters, the well depth, and the equilibrium vdW gap. Based on this observation, an approximate approach is developed to obtain the vdW potential between two CNTs without time-consuming computations. The vdW potential estimated by this approach is close to that obtained from complex integrations. Therefore, the developed approach can greatly simplify the calculation of vdW interactions between CNTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) both possess a high tensile strength, are ultra-light weight, and have excellent chemical and thermal stability. They also possess semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field, including biosensors, drug and vaccine delivery and the preparation of unique biomaterials such as reinforced and/or conductive polymer nanocomposites. Despite an explosion of research into potential devices and applications, it is only recently that information on toxicity and biocompatibility has become available. This review presents a summary of the performance of existing carbon biomaterials and gives an outline of the emerging field of nanotoxicology, before reviewing the available and often conflicting investigations into the cytotoxicity and biocompatibility of CNT. Finally, future areas of investigation and possible solutions to current problems are proposed. (c) 2005 Elsevier Ltd. All rights reserved.