932 resultados para nanoscale


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Material surfaces that provide biomimetic cues, such as nanoscale architectures, have been shown to alter cell/biomaterial interactions. Recent studies have identified titania nanotube arrays as strong candidates for use in interfaces on implantable devices due to their ability to elicit improved cellular functionality. However, limited information exists regarding the immune response of nanotube arrays. Thus, in this study, we have investigated the short- and long-term immune cell reaction of titania nanotube arrays. Whole blood lysate (containing leukocytes, thrombocytes and trace amounts of erythrocytes), isolated from human blood, were cultured on titania nanotube arrays and biomedical grade titanium (as a control) for 2 hours and 2 and 7 days. In order to determine the in vitro immune response on titania nanotube arrays, immune cell functionality was evaluated by cellular viability, adhesion, proliferation, morphology, cytokine/chemokine expression, with and without lipopolysaccharide (LPS), and nitric oxide release. The results presented in this study indicate a decrease in short- and long-term monocyte, macrophage and neutrophil functionality on titania nanotube arrays as compared to the control substrate. This work shows a reduced stimulation of the immune response on titania nanotube arrays, identifying this specific nanoarchitecture as a potentially optimal interface for implantable biomedical devices. © 2013 The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silver nanoparticles have high temperature stability and low volatility, and at the nanoscale are known to be an effective antifungal and antimicrobial agent. The present investigation involves the synthesis of silver nanoparticle/carboxymethylcellulose nanocomposites. The nanoparticles synthesised in this study had sizes in the range of 100 and 40 nm. The nanocomposites formed by a combination of metallic nanoparticles and carboxymethylcellulose were characterised by contact angle measurements, solubility tests, thermal and mechanical analyses, and morphological images. Improvements in the hydrophobic properties were observed with inclusion of the nanoparticles in the nanocomposites, with the best results occurring after the addition of 40 nm nanoparticles in a carboxymethylcellulose matrix. The silver nanoparticles tend to occupy the empty spaces in the pores of the carboxymethylcellulose matrix, inducing the collapse of these pores and thereby improving the tensile and barrier properties of the film. Copyright © 2013 American Scientific Publishers All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of nanoscale materials in photovoltaic and photocatalysis devices and photosensors are dramatically affected by surface morphology of nanoparticles, which plays a fundamental role in the understanding of the physical and chemical properties of nanoscale materials. Zinc oxide nanoparticles with an average size of 20 nm were obtained by the use of a sonochemical technique. X-ray diffraction (XRD) associated to Rietveld refinements and transmission electron microscopy (TEM) were used to study structural and morphological characteristics of the samples. An amorphous shell approximately 10 nm thick was observed in the ultrasonically treated sample, and a large reduction in particle size and changes in the lattice parameters were also observed. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nas últimas décadas, diversos pesquisadores têm tentado empregar moléculas em dispositivos eletrônicos de nanoescala. Por este motivo, diferentes parâmetros eletro/ópticos, que regem o transporte eletrônico em moléculas orgânicas, precisam ser analisados. Neste trabalho foi desenvolvido um estudo de transporte de carga para o composto Vermelho de Propila, popularmente utilizado como indicador de pH. A motivação para estudá-lo resulta de sua estrutura constituída por subunidades doadora-aceitadora, acopladas via grupo azo (N=N), uma característica bem conhecida em retificadores moleculares. A metodologia utilizada para tratar o sistema em equilíbrio é baseada em métodos de Mecânica Molecular e Hartree-Fock. Sendo que, para simular o sistema em não-equilíbrio, foi empregado o formalismo de Landauer-Büttiker. Através desses métodos, as curvas características do sistema molecular foram traçadas e comparadas. O resultado da comparação permitiu explicar os fenômenos que regem o transporte eletrônico na nanoestrutura. Além disso, foram analisados os efeitos de contatos metálicos, ligados a molécula na presença de campo elétrico externo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to reduce the cost of Al-Sc alloys and maintain their mechanical properties, the microstructure and mechanical properties of Al-0.24 wt% Sc-0.07 wt% Yb in comparison with Al-0.28 wt% Sc alloys were studied. The aging behaviour, precipitate morphologies, precipitate coarsening and precipitation hardening of both alloys were investigated. The average diameter and the size distribution of nanoscale Al3Sc and Al-3(Sc,Yb) precipitates at various aging conditions were measured. Transmission electron microscopy (TEM) and high-resolution TEM were used to deeply understand the precipitate evolution. A maximum hardness around 73 (HV30) was obtained with a precipitate diameter from 4.3 to 5.6 nm for both alloys. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes have been at the forefront of nanotechnology, leading not only to a better understanding of the basic properties of charge transport in one dimensional materials, but also to the perspective of a variety of possible applications, including highly sensitive sensors. Practical issues, however, have led to the use of bundles of nanotubes in devices, instead of isolated single nanotubes. From a theoretical perspective, the understanding of charge transport in such bundles, and how it is affected by the adsorption of molecules, has been very limited, one of the reasons being the sheer size of the calculations. A frequent option has been the extrapolation of knowledge gained from single tubes to the properties of bundles. In the present work we show that such procedure is not correct, and that there are qualitative differences in the effects caused by molecules on the charge transport in bundles versus isolated nanotubes. Using a combination of density functional theory and recursive Green's function techniques we show that the adsorption of molecules randomly distributed onto the walls of carbon nanotube bundles leads to changes in the charge density and consequently to significant alterations in the conductance even in pristine tubes. We show that this effect is driven by confinement which is not present in isolated nanotubes. Furthermore, a low concentration of dopants randomly adsorbed along a two-hundred nm long bundle drives a change in the transport regime; from ballistic to diffusive, which can account for the high sensitivity to different molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)