947 resultados para naive bayes classifier


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binocular disparity, blur, and proximal cues drive convergence and accommodation. Disparity is considered to be the main vergence cue and blur the main accommodation cue. We have developed a remote haploscopic photorefractor to measure simultaneous vergence and accommodation objectively in a wide range of participants of all ages while fixating targets at between 0.3 and 2 m. By separating the three main near cues, we can explore their relative weighting in three-, two-, one-, and zero-cue conditions. Disparity can be manipulated by remote occlusion; blur cues manipulated by using either a Gabor patch or a detailed picture target; looming cues by either scaling or not scaling target size with distance. In normal orthophoric, emmetropic, symptom-free, naive visually mature participants, disparity was by far the most significant cue to both vergence and accommodation. Accommodation responses dropped dramatically if disparity was not available. Blur only had a clinically significant effect when disparity was absent. Proximity had very little effect. There was considerable interparticipant variation. We predict that relative weighting of near cue use is likely to vary between clinical groups and present some individual cases as examples. We are using this naturalistic tool to research strabismus, vergence and accommodation development, and emmetropization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous techniques exist which can be used for the task of behavioural analysis and recognition. Common amongst these are Bayesian networks and Hidden Markov Models. Although these techniques are extremely powerful and well developed, both have important limitations. By fusing these techniques together to form Bayes-Markov chains, the advantages of both techniques can be preserved, while reducing their limitations. The Bayes-Markov technique forms the basis of a common, flexible framework for supplementing Markov chains with additional features. This results in improved user output, and aids in the rapid development of flexible and efficient behaviour recognition systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new face verification algorithm based on Gabor wavelets and AdaBoost. In the algorithm, faces are represented by Gabor wavelet features generated by Gabor wavelet transform. Gabor wavelets with 5 scales and 8 orientations are chosen to form a family of Gabor wavelets. By convolving face images with these 40 Gabor wavelets, the original images are transformed into magnitude response images of Gabor wavelet features. The AdaBoost algorithm selects a small set of significant features from the pool of the Gabor wavelet features. Each feature is the basis for a weak classifier which is trained with face images taken from the XM2VTS database. The feature with the lowest classification error is selected in each iteration of the AdaBoost operation. We also address issues regarding computational costs in feature selection with AdaBoost. A support vector machine (SVM) is trained with examples of 20 features, and the results have shown a low false positive rate and a low classification error rate in face verification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, an improved stochastic discrimination (SD) is introduced to reduce the error rate of the standard SD in the context of multi-class classification problem. The learning procedure of the improved SD consists of two stages. In the first stage, a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. In the second stage, the standard SD is modified by (i) restricting sampling in the important space; and (ii) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but smaller variance than that of standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples axe provided to demonstrate the effectiveness of the proposed improved SD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Utilising the expressive power of S-Expressions in Learning Classifier Systems often prohibitively increases the search space due to increased flexibility of the endcoding. This work shows that selection of appropriate S-Expression functions through domain knowledge improves scaling in problems, as expected. It is also known that simple alphabets perform well on relatively small sized problems in a domain, e.g. ternary alphabet in the 6, 11 and 20 bit MUX domain. Once fit ternary rules have been formed it was investigated whether higher order learning was possible and whether this staged learning facilitated selection of appropriate functions in complex alphabets, e.g. selection of S-Expression functions. This novel methodology is shown to provide compact results (135-MUX) and exhibits potential for scaling well (1034-MUX), but is only a small step towards introducing abstraction to LCS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper describes the implementation of an offline, low-cost Brain Computer Interface (BCI) alternative to more expensive commercial models. Using inexpensive general purpose clinical EEG acquisition hardware (Truscan32, Deymed Diagnostic) as the base unit, a synchronisation module was constructed to allow the EEG hardware to be operated precisely in time to allow for recording of automatically time stamped EEG signals. The synchronising module allows the EEG recordings to be aligned in stimulus time locked fashion for further processing by the classifier to establish the class of the stimulus, sample by sample. This allows for the acquisition of signals from the subject’s brain for the goal oriented BCI application based on the oddball paradigm. An appropriate graphical user interface (GUI) was constructed and implemented as the method to elicit the required responses (in this case Event Related Potentials or ERPs) from the subject.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work compares classification results of lactose, mandelic acid and dl-mandelic acid, obtained on the basis of their respective THz transients. The performance of three different pre-processing algorithms applied to the time-domain signatures obtained using a THz-transient spectrometer are contrasted by evaluating the classifier performance. A range of amplitudes of zero-mean white Gaussian noise are used to artificially degrade the signal-to-noise ratio of the time-domain signatures to generate the data sets that are presented to the classifier for both learning and validation purposes. This gradual degradation of interferograms by increasing the noise level is equivalent to performing measurements assuming a reduced integration time. Three signal processing algorithms were adopted for the evaluation of the complex insertion loss function of the samples under study; a) standard evaluation by ratioing the sample with the background spectra, b) a subspace identification algorithm and c) a novel wavelet-packet identification procedure. Within class and between class dispersion metrics are adopted for the three data sets. A discrimination metric evaluates how well the three classes can be distinguished within the frequency range 0. 1 - 1.0 THz using the above algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work analyzes the use of linear discriminant models, multi-layer perceptron neural networks and wavelet networks for corporate financial distress prediction. Although simple and easy to interpret, linear models require statistical assumptions that may be unrealistic. Neural networks are able to discriminate patterns that are not linearly separable, but the large number of parameters involved in a neural model often causes generalization problems. Wavelet networks are classification models that implement nonlinear discriminant surfaces as the superposition of dilated and translated versions of a single "mother wavelet" function. In this paper, an algorithm is proposed to select dilation and translation parameters that yield a wavelet network classifier with good parsimony characteristics. The models are compared in a case study involving failed and continuing British firms in the period 1997-2000. Problems associated with over-parameterized neural networks are illustrated and the Optimal Brain Damage pruning technique is employed to obtain a parsimonious neural model. The results, supported by a re-sampling study, show that both neural and wavelet networks may be a valid alternative to classical linear discriminant models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new distributed spam filter system based on mobile agent is proposed in this paper. We introduce the application of mobile agent technology to the spam filter system. The system architecture, the work process, the pivotal technology of the distributed spam filter system based on mobile agent, and the Naive Bayesian filter method are described in detail. The experiment results indicate that the system can prevent spam emails effectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In rapid scan Fourier transform spectrometry, we show that the noise in the wavelet coefficients resulting from the filter bank decomposition of the complex insertion loss function is linearly related to the noise power in the sample interferogram by a noise amplification factor. By maximizing an objective function composed of the power of the wavelet coefficients divided by the noise amplification factor, optimal feature extraction in the wavelet domain is performed. The performance of a classifier based on the output of a filter bank is shown to be considerably better than that of an Euclidean distance classifier in the original spectral domain. An optimization procedure results in a further improvement of the wavelet classifier. The procedure is suitable for enhancing the contrast or classifying spectra acquired by either continuous wave or THz transient spectrometers as well as for increasing the dynamic range of THz imaging systems. (C) 2003 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most active-contour methods are based either on maximizing the image contrast under the contour or on minimizing the sum of squared distances between contour and image 'features'. The Marginalized Likelihood Ratio (MLR) contour model uses a contrast-based measure of goodness-of-fit for the contour and thus falls into the first class. The point of departure from previous models consists in marginalizing this contrast measure over unmodelled shape variations. The MLR model naturally leads to the EM Contour algorithm, in which pose optimization is carried out by iterated least-squares, as in feature-based contour methods. The difference with respect to other feature-based algorithms is that the EM Contour algorithm minimizes squared distances from Bayes least-squares (marginalized) estimates of contour locations, rather than from 'strongest features' in the neighborhood of the contour. Within the framework of the MLR model, alternatives to the EM algorithm can also be derived: one of these alternatives is the empirical-information method. Tracking experiments demonstrate the robustness of pose estimates given by the MLR model, and support the theoretical expectation that the EM Contour algorithm is more robust than either feature-based methods or the empirical-information method. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners, which operate on image intensity discriminative features that are defined on small patches and are fast to compute. A database that is designed to simulate digitized occluding contours of textured objects in natural images is used to train the weak learners. The trained classifier score is then used to obtain a probabilistic model for the presence of texture transitions, which can readily be used for line search texture boundary detection in the direction normal to an initial boundary estimate. This method is fast and therefore suitable for real-time and interactive applications. It works as a robust estimator, which requires a ribbon-like search region and can handle complex texture structures without requiring a large number of observations. We demonstrate results both in the context of interactive 2D delineation and of fast 3D tracking and compare its performance with other existing methods for line search boundary detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stochastic discrimination (SD) depends on a discriminant function for classification. In this paper, an improved SD is introduced to reduce the error rate of the standard SD in the context of a two-class classification problem. The learning procedure of the improved SD consists of two stages. Initially a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. Then the standard SD is modified by 1) restricting sampling in the important space, and 2) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but with a smaller variance than that of the standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples are provided to demonstrate the effectiveness of the proposed improved SD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The host choice and sex allocation decisions of a foraging female parasitoid will have an enormous influence on the life-history characteristics of her offspring. The pteromalid Pachycrepoideus vindemiae is a generalist idiobiont pupal parasitoid of many species of cyclorrhaphous Diptera. Wasps reared in Musca domestica were larger, had higher attack rates and greater male mating success than those reared in Drosophila melanogaster. In no-choice situations, naive female R vindemiae took significantly less time to accept hosts conspecific with their natal host. Parasitoids that emerged from M. domestica pupae spent similar amounts of time ovipositing in both D. melanogaster and M. domestica. Those parasitoids that had emerged from D. melanogaster spent significantly longer attacking M. domestica pupae. The host choice behaviour of female P. vindemiae was influenced by an interaction between natal host and experience. Female R vindemiae reared in M. domestica only showed a preference among hosts when allowed to gain experience attacking M. domestica, preferentially attacking that species. Similarly, female parasitoids reared on D. melanogaster only showed a preference among hosts when allowed to gain experience attacking D. melanogaster, again preferentially attacking that species. Wasp natal host also influenced sex allocation behaviour. While wasps from both hosts oviposited more females in the larger host, M. domestica, wasps that emerged from M. domestica had significantly more male-biased offspring sex ratios. These results indicate the importance of learning and natal host size in determining R vindemiae attack rates. mating success, host preference and sex allocation behaviour, all critical components of parasitoid fitness.