975 resultados para moments of production quantities and queue lengths
Resumo:
Mowing is one of the most important methods used to control weeds in organic farming, under the no-tillage system. This study aimed to evaluate the effects of three weed management techniques on weed development, using the weeds Bidens pilosa and Commelina benghalensis, in competition with organic corn {mowing at the three-leaf stage (14 days after corn emergence - DACE), mowing at the three- and six-leaf stage (14 and 25 DACE), and no mowing. Single cultivation with no mowing was also evaluated for these weeds. Mowings performed at 14 and 25 DACE prevented the production of B. pilosa seeds, ensuring efficient control of this species. However, the use of this technique was shown to be inefficient in the control of C. benghalensis.
Resumo:
The experiment was carried out aiming to analyze the dry mass production and distribution and the content and accumulation of macronutrients in sourgrass (Digitaria insularis) plants cultivated under mineral nutrition standard conditions. Plants grew in 7-liter pots filled with sand substrate and daily irrigated with nutrient solution, being maintained under greenhouse conditions. Treatments consisted of times of evaluation (21, 35, 49, 63, 77, 91, 105, 119, and 133 days after emergence - DAE) and were arranged in a completely randomized design with four replicates. Sourgrass showed small accumulation of dry mass (0.3 g per plant) and macronutrients (3.7 mg of N per plant, 0.4 mg of P per plant, 5.6 mg of K per plant, 0.9 mg of Ca per plant, 0.7 mg of Mg per plant, and 0.3 mg of S per plant) at vegetative growth stage (< 49 DAE). Those accumulations increased mainly after 77 DAE, reaching the maximum theoretical value at 143, 135, 141, 129, 125, 120, and 128 DAE, for dry mass (12.4 g per plant), N (163.2 mg per plant), P (27.1 mg per plant), K (260.5 mg per plant), Ca (47.6 mg per plant), Mg (30.9 mg per plant), and S (13.7 mg per plant), respectively. K and N were found with higher rates and, as a consequence, they were required and accumulated in greater amounts in plant tissues of sourgrass.
Resumo:
(Monostromatic green algae (Ulvales, Chlorophyta) of São Paulo and Paraná states (Brazil): distribution, growth, and reproduction). Culture studies were used for taxa identification and to understand aspects of the biology and physiology of monostromatic green blades growing in various sites along the coast of São Paulo state (23º30'-25ºl2'S, 45º10'-48ºW) and one site in Paraná state (25º35'S, 48º21'W), southeast and south Brazil, respectively. Possible variations of the growth rate, age of reproduction and life history were tested under different conditions of temperature, salinity and day length. Two species were found: Ulvaria oxysperma (Kützing) Bliding and Monostroma sp. The first one has been previously reported for many temperate and tropical estuaries around the world. Green monostromatic blades with the same life-history and ontogeny as Monostroma sp. have been reported so far only for the tropical coast of Brazil. Species are distinct in their ontogeny of the thallus (constant under different conditions) and limiting temperatures of survival. U. oxysperma grows and reproduces from 10 to 25ºC and dies when maintained at 30ºC; Monostroma sp. does not reproduce at 15ºC and survives at 30ºC. The different salinities and day lengths that were tested had no significant effect on either species.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
(Ultrastructure of secretory and senescence phase in colleters of Bathysa gymnocarpa and B. stipulata (Rubiaceae)). Colleters are secretory structures formed by a parenchymatic axis with vascular bundles, bound by a layer of secretory palisade-like epidermis. Some studies regarding the structure of colleters have focused on secretory cells structure, but not distinguished the secretory and senescent phases. Generally, in mucilage-secreting cells such as colleters, the endoplasmic reticulum and Golgi apparatus are involved in secretion production and transport. In these study, colleters structure of Bathysa gymnocarpa K. Schum. and B. stipulata (Vell.) C. Presl. (Rubiaceae) were determined in two phases: a secretory phase and a senescence one. Samples were collected and processed by usual light and electron microscopy techniques. Studied colleters are constituted by an epidermal palisade layer and a central axis formed by parenchymatic cells with rare vascular traces. During the secretory phase, epidermal cells presented a dense cytoplasm, small vacuoles, enhanced rough and smooth endoplasmic reticulum, and a Golgi apparatus close to large vesicles. During the senescence phase epidermal cells presented a disorganized membrane system. No intact organelles or vesicles were observed. The outer cell wall exhibited similar layers to that observed during the secretory phase. The senescent phase is easily defined by the morphology of the colleters, but not well defined at subcellular level. Our research suggests that programmed cell death starts on secretory phase. However, more evidences are needed to evaluate the phenomena.
Resumo:
Lignin, after cellulose, is the second most abundant biopolymer on Earth, accounting for 30% of the organic carbon in the biosphere. It is considered an important evolutionary adaptation of plants during their transition from the aquatic environment to land, since it bestowed the early tracheophytes with physical support to stand upright and enabled long-distance transport of water and solutes by waterproofing the vascular tissue. Although essential for plant growth and development, lignin is the major plant cell wall component responsible for biomass recalcitrance to industrial processing. The fact that lignin is a non-linear aromatic polymer built with chemically diverse and poorly reactive linkages and a variety of monomer units precludes the ability of any single enzyme to properly recognize and degrade it. Consequently, the use of lignocellulosic feedstock as a renewable and sustainable resource for the production of biofuels and bio-based materials will depend on the identification and characterization of the factors that determine plant biomass recalcitrance, especially the highly complex phenolic polymer lignin. Here, we summarize the current knowledge regarding lignin metabolism in plants, its effect on biomass recalcitrance and the emergent strategies to modify biomass recalcitrance through metabolic engineering of the lignin pathway. In addition, the potential use of sugarcane as a second-generation biofuel crop and the advances in lignin-related studies in sugarcane are discussed.
Resumo:
The present paper describes important features of the immune response induced by the Cry1Ac protein from Bacillus thuringiensis in mice. The kinetics of induction of serum and mucosal antibodies showed an immediate production of anti-Cry1Ac IgM and IgG antibodies in serum after the first immunization with the protoxin by either the intraperitoneal or intragastric route. The antibody fraction in serum and intestinal fluids consisted mainly of IgG1. In addition, plasma cells producing anti-Cry1Ac IgG antibodies in Peyer's patches were observed using the solid-phase enzyme-linked immunospot (ELISPOT). Cry1Ac toxin administration induced a strong immune response in serum but in the small intestinal fluids only anti-Cry1Ac IgA antibodies were detected. The data obtained in the present study confirm that the Cry1Ac protoxin is a potent immunogen able to induce a specific immune response in the mucosal tissue, which has not been observed in response to most other proteins.
Resumo:
Cyanide-resistant alternative oxidase (AOX) is not limited to plant mitochondria and is widespread among several types of protists. The uncoupling protein (UCP) is much more widespread than previously believed, not only in tissues of higher animals but also in plants and in an amoeboid protozoan. The redox energy-dissipating pathway (AOX) and the proton electrochemical gradient energy-dissipating pathway (UCP) lead to the same final effect, i.e., a decrease in ATP synthesis and an increase in heat production. Studies with green tomato fruit mitochondria show that both proteins are present simultaneously in the membrane. This raises the question of a specific physiological role for each energy-dissipating system and of a possible functional connection between them (shared regulation). Linoleic acid, an abundant free fatty acid in plants which activates UCP, strongly inhibits cyanide-resistant respiration mediated by AOX. Moreover, studies of the evolution of AOX and UCP protein expression and of their activities during post-harvest ripening of tomato fruit show that AOX and plant UCP work sequentially: AOX activity decreases in early post-growing stages and UCP activity is decreased in late ripening stages. Electron partitioning between the alternative oxidase and the cytochrome pathway as well as H+ gradient partitioning between ATP synthase and UCP can be evaluated by the ADP/O method. This method facilitates description of the kinetics of energy-dissipating pathways and of ATP synthase when state 3 respiration is decreased by limitation of oxidizable substrate.
Resumo:
Until recently, dietary sources of nucleotides were thought not to be essential for good nutrition. Certain states with higher metabolic demands may require larger amounts that cannot be provided by endogenous production. The objective of the present study was to determine the action of nucleotides on the recovery from lactose-induced diarrhea in weaned rats. Thirty-six weanling Fisher rats were divided into two groups. Group 1 received a standard diet and group 2 received a diet containing lactose in place of starch. On the 10th day, six animals per group were sacrificed for histopathological evaluation. The remaining animals were divided into two other subgroups, each with 6 animals, receiving a control diet, a control diet with nucleotides (0.05% adenosine monophosphate, 0.05% guanosine monophosphate, 0.05% cytidine monophosphate, 0.05% uridine monophosphate and 0.05% inosine monophosphate), a diet with lactose, and a diet with lactose and nucleotides. On the 32nd day of the experiment all animals were sacrificed. Animals with diarrhea weighed less than animals without diarrhea. The introduction of nucleotides did not lead to weight gain. Mean diet consumption was lower in the group that continued to ingest lactose, with the group receiving lactose plus nucleotides showing a lower mean consumption. Animals receiving lactose had inflammatory reaction and deposits of periodic acid-Schiff-positive material in intestinal, hepatic and splenic tissues. The introduction of nucleotides led to an improvement of the intestinal inflammatory reaction. In lactose-induced diarrhea, when the stimulus is maintained - lactose overload - the nucleotides have a limited action on the weight gain and on recovery of intestinal morphology, although they have a protective effect on hepatic injury and improve the inflammatory response.
Resumo:
The rate of axonal regeneration, after sciatic nerve lesion in adult C57BL/6J mice, is reduced when compared to other isogenic strains. It was observed that such low regeneration was not due just to a delay, since neuronal death was observed. Two general mechanisms of cell death, apoptosis and necrosis, may be involved. By using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) technique, we demonstrated that a large number of sensory neurons, as well as satellite cells found in the dorsal root ganglia, were intensely labeled, thus indicating that apoptotic mechanisms were involved in the death process. Although almost no labeled neurons or satellite cells were observed one week after transection, a more than ten-fold increase in TUNEL labeling was detected after two weeks. The results obtained with the C57BL/6J strain were compared with those of the A/J strain, which has a much higher peripheral nerve regeneration potential. In A/J mice, almost no labeling of sensory neurons or satellite cells was observed after one or two weeks, indicating the absence of neuronal loss. Our data confirm previous observations that approximately 40% of C57BL/6J sensory neurons die after sciatic nerve transection, and indicate that apoptotic events are involved. Also, our observations reinforce the hypothesis that the low rate of axonal regeneration occurring in C57BL/6J mice may be the result of a mismatch in the timing of the neurons need for neurotrophic substances, and production of the latter by non-neuronal cells in the distal stump.
Resumo:
In the present study we evaluated T cell proliferation and Th lymphokine patterns in response to gp43 from Paracoccidioides brasiliensis presented by isolated dendritic cells from susceptible and resistant mice. T cell proliferation assays showed that dendritic cells from susceptible mice were less efficient than those from resistant mice. The pattern of T cell lymphokines stimulated by dendritic cells was always Th1, although the levels of IL-2 and IFN-gamma were lower in T cell cultures from susceptible mice. To determie whether different antigen-presenting cells such as macrophages and dendritic cells stimulated different concentrations of Th1 lymphokines, the production of IFN-gamma and IL-2 was measured. It was observed that dendritic cells were more efficient than macrophages in stimulating lymphoproliferation in resistant mice. However, no significant difference was observed for IFN-gamma or IL-2 production. When cells from susceptible mice were used, macrophages were more efficient in stimulating lymphoproliferation than dendritic cells, but no difference was observed in the production of Th1 cytokine. Taken together, these results suggest the lower efficiency of dendritic cells and macrophages from B10.A mice in stimulating T cells that secrete Th1 lymphokines in vitro, an effect that may be involved in the progression of the disease in vivo.
Resumo:
The central nervous system plays an important role in the control of renal sodium excretion. We present here a brief review of physiologic regulation of hydromineral balance and discuss recent results from our laboratory that focus on the participation of nitrergic, vasopressinergic, and oxytocinergic systems in the regulation of water and sodium excretion under different salt intake and hypertonic blood volume expansion (BVE) conditions. High sodium intake induced a significant increase in nitric oxide synthase (NOS) activity in the medial basal hypothalamus and neural lobe, while a low sodium diet decreased NOS activity in the neural lobe, suggesting that central NOS is involved in the control of sodium balance. An increase in plasma concentrations in vasopressin (AVP), oxytocin (OT), atrial natriuretic peptide (ANP), and nitrate after hypertonic BVE was also demonstrated. The central inhibition of NOS by L-NAME caused a decrease in plasma AVP and no change in plasma OT or ANP levels after BVE. These data indicate that the increase in AVP release after hypertonic BVE depends on nitric oxide production. In contrast, the pattern of OT secretion was similar to that of ANP secretion, supporting the view that OT is a neuromodulator of ANP secretion during hypertonic BVE. Thus, neurohypophyseal hormones and ANP are secreted under hypertonic BVE in order to correct the changes induced in blood volume and osmolality, and the secretion of AVP in this particular situation depends on NOS activity.
Resumo:
Proteoglycans are abundant in the developing brain and there is much circumstantial evidence for their roles in directional neuronal movements such as cell body migration and axonal growth. We have developed an in vitro model of astrocyte cultures of the lateral and medial sectors of the embryonic mouse midbrain, that differ in their ability to support neuritic growth of young midbrain neurons, and we have searched for the role of interactive proteins and proteoglycans in this model. Neurite production in co-cultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exert an inhibitory or nonpermissive effect on neuritic growth that is correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment of astrocytes with chondroitinase ABC revealed a growth-promoting effect of CS on lateral glia but treatment with exogenous CS-4 indicated a U-shaped dose-response curve for CS. In contrast, the growth-inhibitory action of medial astrocytes was reversed by exogenous CS-4. Treatment of astrocytes with heparitinase indicated that the growth-inhibitory action of medial astrocytes may depend heavily on HS by an as yet unknown mechanism. The results are discussed in terms of available knowledge on the binding of HS proteoglycans to interactive proteins, with emphasis on the importance of unraveling the physiological functions of glial glycoconjugates for a better understanding of neuron-glial interactions.
Resumo:
The effects of p-chlorophenylalanine, an inhibitor of serotonin synthesis, indomethacin, an inhibitor of prostaglandin synthesis, cyproheptadine, a serotonin, bradykinin and histamine antagonist, were assessed separately and in combination with chloroquine (CQ) in Vom strains of Swiss albino mice (18-22 g) of either sex infected intraperitoneally with 1 x 10(7) Plasmodium yoelii nigeriensis-induced malaria. As prophylactic, these agents reduced from 31.9 ± 4.5 to 16.1 ± 8.1% the level of parasitemia relative to control but had no appreciable activity as curative agents when administered subcutaneously once daily for 4 days after 72 h of parasites innoculum in vivo. However, CQ alone and the combination of these agents with CQ in curative and prophylactic treatments significantly reduced (from 50.3 ± 5.8 to 4.9 ± 0.75%) the level of parasitemia (P < 0.05), which was taken only once 72 h after the parasites innoculum. The prophylactic result was shown to produce better results than the curative treatment. The data indicate that inhibitors and an antagonist can reduce the parasitemia load (the extent of damage and the severity of infection) as well as enhance the effects of CQ when combined with it for malaria therapy. The study reveals that the production of autacoids in established infection renders autacoid inhibitors and an antagonist ineffective for radical cure in malarial mice; however, selective inhibition of local hormones implicated in the pathological manifestations of malaria infection by autacoid inhibitors and an antagonist may be a possible pathway to reduce the severity of infection and the associated tissue damage and to enhance the efficacy of available anti-malarials.
Resumo:
The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.