889 resultados para molecular self-assembly


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers’ disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly “nanodisc” structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/ Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At low ionic strength dimyristoylphosphatidylglycerol (DMPG) exhibits a broad phase transition region characterized by several superimposed calorimetric peaks. Peculiar properties, such as sample transparency, are observed only in the transition region. In this work we use differential scanning calorimetry (DSC), turbidity. and optical microscopy to study the narrowing of the transition region with the increase of ionic strength (0-500 mM NaCl). Upon addition of salt, the temperature extension of the transition region is reduced, and the number of calorimetric peaks decreases until a single cooperative event at T(m) = 23 degrees C is observed in the presence of 500 mM NaCl. The transition region is always coupled with a decrease in turbidity, but a transparent region is detected within the melting process only in the presence of up to 20 mM NaCl. The vanishing of the transparent region is associated with one of the calorimetric peaks. Optical microscopy of giant vesicles shows that bilayers first rupture when the transition region is reached and Subsequently lose optical contrast. Fluorescence microscopy reveals a blurry and undefined image in the transparent region, suggesting a different lipid self-assembly. Overall sample turbidity can be directly related to the bilayer optical contrast. Our observations are discussed in terms of the bilayer being perforated along the transition region. In the narrower temperature interval of the transparent region, dependent on the ionic strength, the perforation is extensive and the bilayer completely loses the optical contrast.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interactions between three different protein antigens and dioctadecyldimethylammonium bromide (DODAB) dispersed in aqueous solutions from probe sonication or adsorbed its one bilayer onto particles was comparatively investigated. The three model proteins were bovine serum albumin (BSA), purified 18 kDa/14 kDa antigens from Taenia crassiceps (18/14-Tcra) and a recombinant, heat-shock protein hsp-18 kDa from Mycobacterium leprae. Protein-DODAB complexes in water solution were characterized by dynamic light scattering for sizing and zeta-potential analysis. Cationic complexes (80-100 nm of mean hydrodynamic diameter) displayed sizes similar to those of DODAB bilayer fragments (BF) in aqueous solution and good colloid stability over a range of DODAB and protein concentrations. The amount of cationic lipid required for attaining zero of zeta-potential at a given protein amount depended on protein nature being smaller for 18 kDa/14 kDa antigens than for BSA. Mean diameters for DODAB/protein complexes increased, whereas zeta-potentials decreased with NaCl or protein concentration. In mice, weak IgG production but significant cellular immune responses were induced by the complexes in comparison to antigens alone or carried by aluminum hydroxide as shown from IgG in serum determined by ELISA, delayed type hypersensitivity reaction from footpad swelling tests and cytokines analysis. The novel cationic adjuvant/protein complexes revealed good colloid stability and potential for vaccine design at a reduced DODAB concentration. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efficient compact TiO(2) films using different polyeleetrolytes are prepared by the layer-by-layer technique (LbL) and applied as an effective contact and blocking film in dye-sensitized solar cells (DSCs). The polyanion thermal stability plays a major role on the compact layers, which decreases back electron transfer processes and current losses at the FTO/TiO(2) interface. FESEM images show that polyelectrolytes such is sodium sullonated polystyrene (PSS) and sulfonated lignin (SE), in comparison to poly(acrylic acid) (FAA), ensure an adequate morphology for the LbL TiO(2) layer deposited before the mesoporous film, even triter the sintering step at 450 degrees C. The so treated photoanode in DSCs leads to a 30% improvement On the overall conversion efficiency. Electrochemical impedance spectroscopy (EIS) is employed to ascertain the role of die compact films with such polyelectrolytes. The significant increase in V(oc) of the solar cells with adequate polyelectrolytes in the LbL TiO(2) films shows their pivotal role in decreasing the electron recombination at the FTO surface and enhancing the electrical contact of FTO with the mesoporous TiO(2) layer.