1000 resultados para molecular authentication
Resumo:
Saint Louis encephalitis virus (SLEV) is a member of the Japanese-encephalitis virus serocomplex of the genus Flavivirus. SLEV is broadly distributed in the Americas and the Caribbean Islands, where it is usually transmitted by mosquitoes of the genus Culex and primarily to birds and mammalian-hosts. Humans are occasionally infected by the virus and are dead-end hosts. SLEV causes encephalitis in temperate regions, while in tropical regions of the Americas, several human cases and a wide biological diversity of SLEV-strains have been reported. The phylogenetic analysis of the envelope (E) protein genes indicated eight-genotypes of SLEV with geographic overlap. The present paper describes the genotyping of two SLEV viruses detected in mosquito-pools collected in northern Colombia (department of Cordoba). We used reverse transcription-polymerase chain reaction to amplify a fragment of theE-gene to confirm the virus identity and completeE-gene sequencing for phylogenetic analysis and genotyping of the two-SLEV viruses found circulating in Córdoba. This is the first report of SLEV genotype IV in Colombia (Córdoba) in mosquitoes from a region of human inhabitation, implicating the risk of human disease due to SLEV infection. Physicians should consider SLEV as a possible aetiology for undiagnosed febrile and neurologic syndromes among their patients who report exposure to mosquito-bites.
Resumo:
Fragile X syndrome is the most common inherited form of intellectual disability. Here we report on a study based on a collaborative registry, involving 12 Spanish centres, of molecular diagnostic tests in 1105 fragile X families comprising 5062 individuals, of whom, 1655 carried a full mutation or were mosaic, three cases had deletions, 1840 had a premutation, and 102 had intermediate alleles. Two patients with the full mutation also had Klinefelter syndrome. We have used this registry to assess the risk of expansion from parents to children. From mothers with premutation, the overall rate of allele expansion to full mutation is 52.5%, and we found that this rate is higher for male than female offspring (63.6% versus 45.6%; P < 0.001). Furthermore, in mothers with intermediate alleles (45-54 repeats), there were 10 cases of expansion to a premutation allele, and for the smallest premutation alleles (55-59 repeats), there was a 6.4% risk of expansion to a full mutation, with 56 repeats being the smallest allele that expanded to a full mutation allele in a single meiosis. Hence, in our series the risk for alleles of <59 repeats is somewhat higher than in other published series. These findings are important for genetic counselling.
Resumo:
Group A human rotaviruses (HuRVA) are causative agents of acute gastroenteritis. Six viral structural proteins (VPs) and six nonstructural proteins (NSPs) are produced in RV-infected cells. NSP4 is a diarrhoea-inducing viral enterotoxin and NSP4 gene analysis revealed at least 15 (E1-E15) genotypes. This study analysed the NSP4 genetic diversity of HuRVA G2P[4] strains collected in the state of São Paulo (SP) from 1994 and 2006-2010 using reverse transcription-polymerase chain reaction, sequencing and phylogenetic analysis. Forty (97.6%) G2P[4] strains displayed genotype E2; one strain (2.4%) displayed genotype E1. These results are consistent with the proposed linkage between VP4/VP7 (G2P[4]) and the NSP4 (E2) genotype of HuRVA. NSP4 phylogenetic analysis showed distinct clusters, with grouping of most strains by their genotype and collection year, and most strains from SP were clustered together with strains from other Brazilian states. A deduced amino acid sequence alignment for E2 showed many variations in the C-terminal region, including the VP4-binding domain. Considering the ability of NSP4 to generate host immunity, monitoring NSP4 variations, along with those in the VP4 or VP7 protein, is important for evaluating the circulation and pathogenesis of RV. Finally, the presence of one G2P[4]E1 strain reinforces the idea that new genotype combinations emerge through reassortment and independent segregation.
Resumo:
OBJECTIVES: The objective of this study is to describe the prenatal sonographic features and the results of DNA analysis on three fetuses with dyssegmental dysplasia, Silverman-Handmaker type (DD-SH). METHODS: A retrospective review of three fetuses with confirmed DD-SH was conducted. The fetal ultrasound findings, the radiological characteristics, and the results of the mutation analysis of the heparan sulphate perlecan gene 2 (HSPG2) were reviewed. RESULTS: There were three cases in two families with DD-SH diagnosed prenatally. The main prenatal ultrasound and the radiological features of DD-SH were severe limb shortening and vertebral segmentation and fusion defects (anisospondyly). The DNA analysis of the HSPG2 gene showed that the two affected fetuses in a nonconsanguineous family had a compound heterozygote for the c.646G > T transversion in exon 7 and a c.5788C > T transition in exon 46. The fetus born to the consanguineous couple had a homozygous mutation c.1356-27_1507 + 59del. CONCLUSION: DD-SH can be diagnosed prenatally using fetal ultrasound as early as 13 weeks. Xrays and DNA analysis of the HSPG2 gene are important for the confirmation of the diagnosis and for the preimplantation and prenatal diagnosis in pregnancies at risk. © 2013 John Wiley & Sons, Ltd.
Resumo:
Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in therpoB, katG, inhA,ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 forrpoB, katG, inhA,ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.
Resumo:
This study aimed to estimate the frequency, associated factors, and molecular characterisation of Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, andEntamoeba hartmanni infections. We performed a survey (n = 213 subjects) to obtain parasitological, sanitation, and sociodemographic data. Faecal samples were processed through flotation and centrifugation methods.E. histolytica, E. dispar, E. moshkovskii, and E. hartmanni were identified by nested-polymerase chain reaction (PCR). The overall prevalence of infection was 22/213 (10.3%). The infection rate among subjects who drink rainwater collected from roofs in tanks was higher than the rate in subjects who drink desalinated water pumped from wells; similarly, the infection rate among subjects who practice open defecation was significantly higher than that of subjects with latrines. Out of the 22 samples positive for morphologically indistinguishableEntamoeba species, the differentiation by PCR was successful for 21. The species distribution was as follows: 57.1% to E. dispar, 23.8% to E. histolytica, 14.3% toE. histolytica and E. dispar, and 4.8% E. dispar and E. hartmanni. These data suggest a high prevalence of asymptomatic infection by the group of morphologically indistinguishable Entamoeba histolytica/dispar/moshkovskiicomplex and E. hartmanni species. In this context of water scarcity, the sanitary and socioenvironmental characteristics of the region appear to favour transmission.
Resumo:
For glioblastoma (GBM), survival classification has primarily relied on clinical criteria, exemplified by the Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis (RPA). We sought to improve tumor classification by combining tumor biomarkers with the clinical RPA data. To accomplish this, we first developed 4 molecular biomarkers derived from gene expression profiling, a glioma CpG island methylator phenotype, a novel MGMT promoter methylation assay, and IDH1 mutations. A molecular predictor (MP) model was created with these 4 biomarkers on a training set of 220 retrospectively collected archival GBMtumors. ThisMPwas further combined with RPA classification to develop a molecular-clinical predictor (MCP). The median survivals for the combined, 4-class MCP were 65 months, 31 months, 13 months, and 9 months, which was significantly improved when compared with the RPA alone. The MCP was then applied to 725 samples from the RTOG-0525 cohort, showing median survival for each risk group of NR, 26 months, 16 months, and 11 months. The MCP was significantly improved over the RPA at outcome prediction in the RTOG 0525 cohort with a 33%increase in explained variation with respect to survival, validating the result obtained in the training set. To illustrate the benefit of the MCP for patient stratification, we examined progression-free survival (PFS) for patients receiving standard-dose temozolomide (SD-TMZ) vs. dose-dense TMZ (DD-TMZ) in RPA and MCP risk groups. A significant difference between DD-TMZ and SD-TMZ was observed in the poorest surviving MCP risk group with a median PFS of 6 months vs. 3 months (p ¼ 0.048, log-rank test). This difference was not seen using the RPA classification alone. In summary, we have developed a combined molecular-clinical predictor that appears to improve outcome prediction when compared with clinical variables alone. This MCP may serve to better identify patients requiring intensive treatments beyond the standard of care.
Resumo:
We present the first evaluation of a novel molecular assay, the Speed-oligo Direct Mycobacterium tuberculosis (SO-DMT) assay, which is based on PCR combined with a dipstick for the detection of mycobacteria and the specific identification of M. tuberculosis complex (MTC) in respiratory specimens. A blind evaluation was carried out in two stages: first, under experimental conditions on convenience samples comprising 20 negative specimens, 44 smear- and culture-positive respiratory specimens, and 11 sputa inoculated with various mycobacterium-related organisms; and second, in the routine workflow of 566 fresh respiratory specimens (4.9% acid-fast bacillus [AFB] smear positives, 7.6% MTC positives, and 1.8% nontuberculous mycobacteria [NTM] culture positives) from two Mycobacterium laboratories. SO-DMT assay showed no reactivity in any of the mycobacterium-free specimens or in those with mycobacterium-related organisms. Compared to culture, the sensitivity in the selected smear-positive specimens was 0.91 (0.92 for MTC and 0.90 for NTM), and there was no molecular detection of NTM in a tuberculosis case or vice versa. With respect to culture and clinical data, the sensitivity, specificity, and positive and negative predictive values for the SO-DMT system in routine specimens were 0.76 (0.93 in smear positives [1.0 for MTC and 0.5 for NTM] and 0.56 in smear negatives [0.68 for MTC and 0.16 for NTM]), 0.99, 0.85 (1.00 in smear positives and 0.68 in smear negatives), and 0.97, respectively. Molecular misidentification of NTM cases occurred when testing 2 gastric aspirates from two children with clinically but not microbiologically confirmed lung tuberculosis. The SO-DMT assay appears to be a fast and easy alternative for detecting mycobacteria and differentiating MTC from NTM in smear-positive respiratory specimens.
Resumo:
BACKGROUND Nucleic acid amplification tests are increasingly used for the rapid diagnosis of tuberculosis. We undertook a comparative study of the efficiency and diagnostic yield of a real-time PCR senX3-regX3 based assay versus the classical IS6110 target and the new commercial methods. METHODS This single-blind prospective comparative study included 145 consecutive samples: 76 from patients with culture-confirmed tuberculosis (86.8% pulmonary and 13.2% extrapulmonary tuberculosis: 48.7% smear-positive and 51.3% smear-negative) and 69 control samples (24 from patients diagnosed with non-tuberculous mycobacteria infections and 45 from patients with suspected tuberculosis which was eventually ruled out). All samples were tested by two CE-marked assays (Xpert®MTB/RIF and AnyplexTM plus MTB/NTM) and two in-house assays targeting senX3-regX3 and the IS6110 gene. RESULTS The detection limit ranged from 1.00E+01 fg for Anyplex, senX3-regX3 and IS6110 to 1.00E+04 fg for Xpert. All three Xpert, senX3-regX3 and IS6110 assays detected all 37 smear-positive cases. Conversely, Anyplex was positive in 34 (91.9%) smear-positive cases. In patients with smear-negative tuberculosis, differences were observed between the assays; Xpert detected 22 (56.41%) of the 39 smear-negative samples, Anyplex 24 (61.53%), senX3-regX3 28 (71.79%) and IS6110 35 (89.74%). Xpert and senX3-regX3 were negative in all control samples; however, the false positive rate was 8.7% and 13% for Anyplex and IS6110, respectively. The overall sensitivity was 77.6%, 85.7%, 77.3% and 94.7% and the specificity was 100%, 100%, 90.8% and 87.0% for the Xpert, senX3-regX3, Anyplex and IS6110 assays, respectively. CONCLUSION Real-time PCR assays targeting IS6110 lack the desired specificity. The Xpert MTB/RIF and in-house senX3-regX3 assays are both sensitive and specific for the detection of MTBC in both pulmonary and extrapulmonary samples. Therefore, the real time PCR senX3-regX3 based assay could be a useful and complementary tool in the diagnosis of tuberculosis.
Resumo:
Peripheral T-cell lymphoma, not otherwise specified is a heterogeneous group of aggressive neoplasms with indistinct borders. By gene expression profiling we previously reported unsupervised clusters of peripheral T-cell lymphomas, not otherwise specified correlating with CD30 expression. In this work we extended the analysis of peripheral T-cell lymphoma molecular profiles to prototypical CD30(+) peripheral T-cell lymphomas (anaplastic large cell lymphomas), and validated mRNA expression profiles at the protein level. Existing transcriptomic datasets from peripheral T-cell lymphomas, not otherwise specified and anaplastic large cell lymphomas were reanalyzed. Twenty-one markers were selected for immunohistochemical validation on 80 peripheral T-cell lymphoma samples (not otherwise specified, CD30(+) and CD30(-); anaplastic large cell lymphomas, ALK(+) and ALK(-)), and differences between subgroups were assessed. Clinical follow-up was recorded. Compared to CD30(-) tumors, CD30(+) peripheral T-cell lymphomas, not otherwise specified were significantly enriched in ALK(-) anaplastic large cell lymphoma-related genes. By immunohistochemistry, CD30(+) peripheral T-cell lymphomas, not otherwise specified differed significantly from CD30(-) samples [down-regulated expression of T-cell receptor-associated proximal tyrosine kinases (Lck, Fyn, Itk) and of proteins involved in T-cell differentiation/activation (CD69, ICOS, CD52, NFATc2); upregulation of JunB and MUM1], while overlapping with anaplastic large cell lymphomas. CD30(-) peripheral T-cell lymphomas, not otherwise specified tended to have an inferior clinical outcome compared to the CD30(+) subgroups. In conclusion, we show molecular and phenotypic features common to CD30(+) peripheral T-cell lymphomas, and significant differences between CD30(-) and CD30(+) peripheral T-cell lymphomas, not otherwise specified, suggesting that CD30 expression might delineate two biologically distinct subgroups.
Resumo:
The SwissBioisostere database (http://www.swissbioisostere.ch) contains information on molecular replacements and their performance in biochemical assays. It is meant to provide researchers in drug discovery projects with ideas for bioisosteric modifications of their current lead molecule, as well as to give interested scientists access to the details on particular molecular replacements. As of August 2012, the database contains 21 293 355 datapoints corresponding to 5 586 462 unique replacements that have been measured in 35 039 assays against 1948 molecular targets representing 30 target classes. The accessible data were created through detection of matched molecular pairs and mining bioactivity data in the ChEMBL database. The SwissBioisostere database is hosted by the Swiss Institute of Bioinformatics and available via a web-based interface.
Resumo:
The mechanism of action of antimicrobial peptides is, to our knowledge, still poorly understood. To probe the biophysical characteristics that confer activity, we present here a molecular-dynamics and biophysical study of a cyclic antimicrobial peptide and its inactive linear analog. In the simulations, the cyclic peptide caused large perturbations in the bilayer and cooperatively opened a disordered toroidal pore, 1–2 nm in diameter. Electrophysiology measurements confirm discrete poration events of comparable size. We also show that lysine residues aligning parallel to each other in the cyclic but not linear peptide are crucial for function. By employing dual-color fluorescence burst analysis, we show that both peptides are able to fuse/aggregate liposomes but only the cyclic peptide is able to porate them. The results provide detailed insight on the molecular basis of activity of cyclic antimicrobial peptides
Resumo:
Introduction : Les particules de HDL (High Density Lipoprotein) ont des fonctions diverses notamment en raison de leur structure très hétérogène. Tout d'abord, les HDLs assurent le transport du cholestérol de la périphérie vers le foie mais sont également dotées de nombreuses vertus protectrices. Un grand nombre d'études démontre les mécanismes de protection des HDL sur les cellules endothéliales. Sachant que les patients diabétiques ont ses niveaux bas de HDL, le but de cette étude est d'investiguer les mécanismes moléculaires de protection sur la cellule beta pancréatique. Résultats : Une étude « microarray » nous a permis d'obtenir une liste de gènes régulés par le stress, comme la privation de sérum, en présence ou en absence de HDL. Parmi ces gènes, nous nous sommes particulièrement intéressés à un répresseur de la synthèse protéique « cap » -dépendante, 4EBP1. Dans notre étude transcriptomique, les niveaux d'ARNm de 4E-BP1 augmentaient de 30þ% dans des conditions sans sérum alors que les HDLs bloquaient cette élévation. Au niveau protéique, les niveaux totaux de 4EBP1 étaient augmentés dans les conditions de stress et cette élévation était contrée par les HDLs. D'autres expériences de transfection ou d'infection de 4E-BP1 ont montrés que cette protéine était capable d'induire l'apoptose dans les cellules beta, imitant ainsi l'effet de la privation de sérum. Afin de déterminer le rôle direct de 4E-BP1 dans la mort cellulaire, ses niveaux ont été réduits par interférence ARN. Le niveau de mort cellulaire induit par l'absence de sérum était moins élevé dans des cellules à taux réduits de 4EBP1 par RNAi que dans des cellules contrôle. Conclusion : Ces données montrent que les HDL protègent les cellules beta suite à différents stress et que 4E-BP1 est une des protéines pro-apoptotiques inhibées par les HDL. 4E-BP1 est capable d'induire la mort cellulaire dans les cellules bêta et cette réponse peut-être réduite en diminuant l'expression de cette protéine. Nos données suggèrent que 4E-BP1 est une cible potentielle pour le traitement du diabète.
Resumo:
Red wood ants (Formica rufa group) constitute a group of species that are considered to be among the most promising bioindicators in forest ecosystems. However, because of their morphological similarity and intraspecific variability, morphological species identification can be difficult. Considerable expertise is necessary to discriminate between the sibling species F. lugubris and F. paralugubris, two species that often live in sympatry in the same Alpine forests. New taxonomic tools providing rapid and reliable species identification are needed. We present a simple and reliable molecular technique based on mtDNA (COI gene) and a restriction enzyme for discriminating between F. lugubris and F. paralugubris. We confirm the validity of this method with a Bayesian analysis based on microsatellites. This new molecular tool represents a clear breakthrough for discriminating between F. lugubris and F. paralugubris and is likely to be helpful in large-scale biomonitoring.