963 resultados para modular parametrization
Resumo:
Changes to the electroencephalogram (EEG) observed during general anesthesia are modeled with a physiological mean field theory of electrocortical activity. To this end a parametrization of the postsynaptic impulse response is introduced which takes into account pharmacological effects of anesthetic agents on neuronal ligand-gated ionic channels. Parameter sets for this improved theory are then identified which respect known anatomical constraints and predict mean firing rates and power spectra typically encountered in human subjects. Through parallelized simulations of the eight nonlinear, two-dimensional partial differential equations on a grid representing an entire human cortex, it is demonstrated that linear approximations are sufficient for the prediction of a range of quantitative EEG variables. More than 70 000 plausible parameter sets are finally selected and subjected to a simulated induction with the stereotypical inhaled general anesthetic isoflurane. Thereby 86 parameter sets are identified that exhibit a strong “biphasic” rise in total power, a feature often observed in experiments. A sensitivity study suggests that this “biphasic” behavior is distinguishable even at low agent concentrations. Finally, our results are briefly compared with previous work by other groups and an outlook on future fits to experimental data is provided.
Resumo:
We investigate the role of the anthropogenic heat flux on the urban heat island of London. To do this, the time-varying anthropogenic heat flux is added to an urban surface-energy balance parametrization, the Met Office–Reading Urban Surface Exchange Scheme (MORUSES), implemented in a 1 km resolution version of the UK Met Office Unified Model. The anthropogenic heat flux is derived from energy-demand data for London and is specified on the model's 1 km grid; it includes variations on diurnal and seasonal time-scales. We contrast a spring case with a winter case, to illustrate the effects of the larger anthropogenic heat flux in winter and the different roles played by thermodynamics in the different seasons. The surface-energy balance channels the anthropogenic heat into heating the urban surface, which warms slowly because of the large heat capacity of the urban surface. About one third of this additional warming goes into increasing the outgoing long-wave radiation and only about two thirds goes into increasing the sensible heat flux that warms the atmosphere. The anthropogenic heat flux has a larger effect on screen-level temperatures in the winter case, partly because the anthropogenic flux is larger then and partly because the boundary layer is shallower in winter. For the specific winter case studied here, the anthropogenic heat flux maintains a well-mixed boundary layer through the whole night over London, whereas the surrounding rural boundary layer becomes strongly stably stratified. This finding is likely to have important implications for air quality in winter. On the whole, inclusion of the anthropogenic heat flux improves the comparison between model simulations and measurements of screen-level temperature slightly and indicates that the anthropogenic heat flux is beginning to be an important factor in the London urban heat island.
Resumo:
Ensemble learning can be used to increase the overall classification accuracy of a classifier by generating multiple base classifiers and combining their classification results. A frequently used family of base classifiers for ensemble learning are decision trees. However, alternative approaches can potentially be used, such as the Prism family of algorithms that also induces classification rules. Compared with decision trees, Prism algorithms generate modular classification rules that cannot necessarily be represented in the form of a decision tree. Prism algorithms produce a similar classification accuracy compared with decision trees. However, in some cases, for example, if there is noise in the training and test data, Prism algorithms can outperform decision trees by achieving a higher classification accuracy. However, Prism still tends to overfit on noisy data; hence, ensemble learners have been adopted in this work to reduce the overfitting. This paper describes the development of an ensemble learner using a member of the Prism family as the base classifier to reduce the overfitting of Prism algorithms on noisy datasets. The developed ensemble classifier is compared with a stand-alone Prism classifier in terms of classification accuracy and resistance to noise.
Resumo:
The drag produced by 2D orographic gravity waves trapped at a temperature inversion and waves propagating in the stably stratified layer existing above are explicitly calculated using linear theory, for a two-layer atmosphere with neutral static stability near the surface, mimicking a well-mixed boundary layer. For realistic values of the flow parameters, trapped lee wave drag, which is given by a closed analytical expression, is comparable to propagating wave drag, especially in moderately to strongly non-hydrostatic conditions. In resonant flow, both drag components substantially exceed the single-layer hydrostatic drag estimate used in most parametrization schemes. Both drag components are optimally amplified for a relatively low-level inversion and Froude numbers Fr ≈ 1. While propagating wave drag is maximized for approximately hydrostatic flow, trapped lee wave drag is maximized for l_2 a = O(1) (where l_2 is the Scorer parameter in the stable layer and a is the mountain width). This roughly happens when the horizontal scale of trapped lee waves matches that of the mountain slope. The drag behavior as a function of Fr for l_2 H = 0.5 (where H is the inversion height) and different values of l2a shows good agreement with numerical simulations. Regions of parameter space with high trapped lee wave drag correlate reasonably well with those where lee wave rotors were found to occur in previous nonlinear numerical simulations including frictional effects. This suggests that trapped lee wave drag, besides giving a relevant contribution to low-level drag exerted on the atmosphere, may also be useful to diagnose lee rotor formation.
Resumo:
The role of atmospheric general circulation model (AGCM) horizontal resolution in representing the global energy budget and hydrological cycle is assessed, with the aim of improving the understanding of model uncertainties in simulating the hydrological cycle. We use two AGCMs from the UK Met Office Hadley Centre: HadGEM1-A at resolutions ranging from 270 to 60 km, and HadGEM3-A ranging from 135 to 25 km. The models exhibit a stable hydrological cycle, although too intense compared to reanalyses and observations. This over-intensity is explained by excess surface shortwave radiation, a common error in general circulation models (GCMs). This result is insensitive to resolution. However, as resolution is increased, precipitation decreases over the ocean and increases over the land. This is associated with an increase in atmospheric moisture transport from ocean to land, which changes the partitioning of moisture fluxes that contribute to precipitation over land from less local to more non-local moisture sources. The results start to converge at 60-km resolution, which underlines the excessive reliance of the mean hydrological cycle on physical parametrization (local unresolved processes) versus model dynamics (large-scale resolved processes) in coarser HadGEM1 and HadGEM3 GCMs. This finding may be valid for other GCMs, showing the necessity to analyze other chains of GCMs that may become available in the future with such a range of horizontal resolutions. Our finding supports the hypothesis that heterogeneity in model parametrization is one of the underlying causes of model disagreement in the Coupled Model Intercomparison Project (CMIP) exercises.
Resumo:
Prism is a modular classification rule generation method based on the ‘separate and conquer’ approach that is alternative to the rule induction approach using decision trees also known as ‘divide and conquer’. Prism often achieves a similar level of classification accuracy compared with decision trees, but tends to produce a more compact noise tolerant set of classification rules. As with other classification rule generation methods, a principle problem arising with Prism is that of overfitting due to over-specialised rules. In addition, over-specialised rules increase the associated computational complexity. These problems can be solved by pruning methods. For the Prism method, two pruning algorithms have been introduced recently for reducing overfitting of classification rules - J-pruning and Jmax-pruning. Both algorithms are based on the J-measure, an information theoretic means for quantifying the theoretical information content of a rule. Jmax-pruning attempts to exploit the J-measure to its full potential because J-pruning does not actually achieve this and may even lead to underfitting. A series of experiments have proved that Jmax-pruning may outperform J-pruning in reducing overfitting. However, Jmax-pruning is computationally relatively expensive and may also lead to underfitting. This paper reviews the Prism method and the two existing pruning algorithms above. It also proposes a novel pruning algorithm called Jmid-pruning. The latter is based on the J-measure and it reduces overfitting to a similar level as the other two algorithms but is better in avoiding underfitting and unnecessary computational effort. The authors conduct an experimental study on the performance of the Jmid-pruning algorithm in terms of classification accuracy and computational efficiency. The algorithm is also evaluated comparatively with the J-pruning and Jmax-pruning algorithms.
The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes
Resumo:
This manuscript describes the energy and water components of a new community land surface model called the Joint UK Land Environment Simulator (JULES). This is developed from the Met Office Surface Exchange Scheme (MOSES). It can be used as a stand alone land surface model driven by observed forcing data, or coupled to an atmospheric global circulation model. The JULES model has been coupled to the Met Office Unified Model (UM) and as such provides a unique opportunity for the research community to contribute their research to improve both world-leading operational weather forecasting and climate change prediction systems. In addition JULES, and its forerunner MOSES, have been the basis for a number of very high-profile papers concerning the land-surface and climate over the last decade. JULES has a modular structure aligned to physical processes, providing the basis for a flexible modelling platform.
Resumo:
The mean wind direction within an urban canopy changes with height when the incoming flow is not orthogonal to obstacle faces. This wind-turning effect is induced by complex processes and its modelling in urban-canopy (UC) parametrizations is difficult. Here we focus on the analysis of the spatially-averaged flow properties over an aligned array of cubes and their variation with incoming wind direction. For this purpose, Reynolds-averaged Navier–Stokes simulations previously compared, for a reduced number of incident wind directions, against direct numerical simulation results are used. The drag formulation of a UCparametrization ismodified and different drag coefficients are tested in order to reproduce the wind-turning effect within the canopy for oblique wind directions. The simulations carried out for a UC parametrization in one-dimensional mode indicate that a height-dependent drag coefficient is needed to capture this effect.
Resumo:
Urbanization related alterations to the surface energy balance impact urban warming (‘heat islands’), the growth of the boundary layer, and many other biophysical processes. Traditionally, in situ heat flux measures have been used to quantify such processes, but these typically represent only a small local-scale area within the heterogeneous urban environment. For this reason, remote sensing approaches are very attractive for elucidating more spatially representative information. Here we use hyperspectral imagery from a new airborne sensor, the Operative Modular Imaging Spectrometer (OMIS), along with a survey map and meteorological data, to derive the land cover information and surface parameters required to map spatial variations in turbulent sensible heat flux (QH). The results from two spatially-explicit flux retrieval methods which use contrasting approaches and, to a large degree, different input data are compared for a central urban area of Shanghai, China: (1) the Local-scale Urban Meteorological Parameterization Scheme (LUMPS) and (2) an Aerodynamic Resistance Method (ARM). Sensible heat fluxes are determined at the full 6 m spatial resolution of the OMIS sensor, and at lower resolutions via pixel aggregation and spatial averaging. At the 6 m spatial resolution, the sensible heat flux of rooftop dominated pixels exceeds that of roads, water and vegetated areas, with values peaking at ∼ 350 W m− 2, whilst the storage heat flux is greatest for road dominated pixels (peaking at around 420 W m− 2). We investigate the use of both OMIS-derived land surface temperatures made using a Temperature–Emissivity Separation (TES) approach, and land surface temperatures estimated from air temperature measures. Sensible heat flux differences from the two approaches over the entire 2 × 2 km study area are less than 30 W m− 2, suggesting that methods employing either strategy maybe practica1 when operated using low spatial resolution (e.g. 1 km) data. Due to the differing methodologies, direct comparisons between results obtained with the LUMPS and ARM methods are most sensibly made at reduced spatial scales. At 30 m spatial resolution, both approaches produce similar results, with the smallest difference being less than 15 W m− 2 in mean QH averaged over the entire study area. This is encouraging given the differing architecture and data requirements of the LUMPS and ARM methods. Furthermore, in terms of mean study QH, the results obtained by averaging the original 6 m spatial resolution LUMPS-derived QH values to 30 and 90 m spatial resolution are within ∼ 5 W m− 2 of those derived from averaging the original surface parameter maps prior to input into LUMPS, suggesting that that use of much lower spatial resolution spaceborne imagery data, for example from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is likely to be a practical solution for heat flux determination in urban areas.
Resumo:
There is a growing need for massive computational resources for the analysis of new astronomical datasets. To tackle this problem, we present here our first steps towards marrying two new and emerging technologies; the Virtual Observatory (e.g, AstroGrid) and the computa- tional grid (e.g. TeraGrid, COSMOS etc.). We discuss the construction of VOTechBroker, which is a modular software tool designed to abstract the tasks of submission and management of a large number of compu- tational jobs to a distributed computer system. The broker will also interact with the AstroGrid workflow and MySpace environments. We discuss our planned usages of the VOTechBroker in computing a huge number of n–point correlation functions from the SDSS data and mas- sive model-fitting of millions of CMBfast models to WMAP data. We also discuss other applications including the determination of the XMM Cluster Survey selection function and the construction of new WMAP maps.
Resumo:
We outline our first steps towards marrying two new and emerging technologies; the Virtual Observatory (e.g, Astro- Grid) and the computational grid. We discuss the construction of VOTechBroker, which is a modular software tool designed to abstract the tasks of submission and management of a large number of computational jobs to a distributed computer system. The broker will also interact with the AstroGrid workflow and MySpace environments. We present our planned usage of the VOTechBroker in computing a huge number of n–point correlation functions from the SDSS, as well as fitting over a million CMBfast models to the WMAP data.
Resumo:
This paper presents single-column model (SCM) simulations of a tropical squall-line case observed during the Coupled Ocean-Atmosphere Response Experiment of the Tropical Ocean/Global Atmosphere Programme. This case-study was part of an international model intercomparison project organized by Working Group 4 ‘Precipitating Convective Cloud Systems’ of the GEWEX (Global Energy and Water-cycle Experiment) Cloud System Study. Eight SCM groups using different deep-convection parametrizations participated in this project. The SCMs were forced by temperature and moisture tendencies that had been computed from a reference cloud-resolving model (CRM) simulation using open boundary conditions. The comparison of the SCM results with the reference CRM simulation provided insight into the ability of current convection and cloud schemes to represent organized convection. The CRM results enabled a detailed evaluation of the SCMs in terms of the thermodynamic structure and the convective mass flux of the system, the latter being closely related to the surface convective precipitation. It is shown that the SCMs could reproduce reasonably well the time evolution of the surface convective and stratiform precipitation, the convective mass flux, and the thermodynamic structure of the squall-line system. The thermodynamic structure simulated by the SCMs depended on how the models partitioned the precipitation between convective and stratiform. However, structural differences persisted in the thermodynamic profiles simulated by the SCMs and the CRM. These differences could be attributed to the fact that the total mass flux used to compute the SCM forcing differed from the convective mass flux. The SCMs could not adequately represent these organized mesoscale circulations and the microphysicallradiative forcing associated with the stratiform region. This issue is generally known as the ‘scale-interaction’ problem that can only be properly addressed in fully three-dimensional simulations. Sensitivity simulations run by several groups showed that the time evolution of the surface convective precipitation was considerably smoothed when the convective closure was based on convective available potential energy instead of moisture convergence. Finally, additional SCM simulations without using a convection parametrization indicated that the impact of a convection parametrization in forced SCM runs was more visible in the moisture profiles than in the temperature profiles because convective transport was particularly important in the moisture budget.
Resumo:
Initial results are presented from a middle atmosphere extension to a version of the European Centre For Medium Range Weather Forecasting tropospheric model. The extended version of the model has been developed as part of the UK Universities Global Atmospheric Modelling Project and extends from the ground to approximately 90 km. A comprehensive solar radiation scheme is included which uses monthly averaged climatological ozone values. A linearised infrared cooling scheme is employed. The basic climatology of the model is described; the parametrization of drag due to orographically forced gravity waves is shown to have a dramatic effect on the simulations of the winter hemisphere.
Resumo:
Semi-analytical expressions for the momentum flux associated with orographic internal gravity waves, and closed analytical expressions for its divergence, are derived for inviscid, stationary, hydrostatic, directionally-sheared flow over mountains with an elliptical horizontal cross-section. These calculations, obtained using linear theory conjugated with a third-order WKB approximation, are valid for relatively slowly-varying, but otherwise generic wind profiles, and given in a form that is straightforward to implement in drag parametrization schemes. When normalized by the surface drag in the absence of shear, a quantity that is calculated routinely in existing drag parametrizations, the momentum flux becomes independent of the detailed shape of the orography. Unlike linear theory in the Ri → ∞ limit, the present calculations account for shear-induced amplification or reduction of the surface drag, and partial absorption of the wave momentum flux at critical levels. Profiles of the normalized momentum fluxes obtained using this model and a linear numerical model without the WKB approximation are evaluated and compared for two idealized wind profiles with directional shear, for different Richardson numbers (Ri). Agreement is found to be excellent for the first wind profile (where one of the wind components varies linearly) down to Ri = 0.5, while not so satisfactory, but still showing a large improvement relative to the Ri → ∞ limit, for the second wind profile (where the wind turns with height at a constant rate keeping a constant magnitude). These results are complementary, in the Ri > O(1) parameter range, to Broad’s generalization of the Eliassen–Palm theorem to 3D flow. They should contribute to improve drag parametrizations used in global weather and climate prediction models.
Resumo:
Automated border control (ABC) is concerned with fast and secure processing for intelligence-led identification. The FastPass project aims to build a harmonised, modular reference system for future European ABC. When biometrics is taken on board as identity, spoofing attacks become a concern. This paper presents current research in algorithm development for counter-spoofing attacks in biometrics. Focussing on three biometric traits, face, fingerprint, and iris, it examines possible types of spoofing attacks, and reviews existing algorithms reported in relevant academic papers in the area of countering measures to biometric spoofing attacks. It indicates that the new developing trend is fusion of multiple biometrics against spoofing attacks.