933 resultados para model driven system, semantic representation, semantic modeling, enterprise system development
Resumo:
Internet of Things based systems are anticipated to gain widespread use in industrial applications. Standardization efforts, like 6L0WPAN and the Constrained Application Protocol (CoAP) have made the integration of wireless sensor nodes possible using Internet technology and web-like access to data (RESTful service access). While there are still some open issues, the interoperability problem in the lower layers can now be considered solved from an enterprise software vendors' point of view. One possible next step towards integration of real-world objects into enterprise systems and solving the corresponding interoperability problems at higher levels is to use semantic web technologies. We introduce an abstraction of real-world objects, called Semantic Physical Business Entities (SPBE), using Linked Data principles. We show that this abstraction nicely fits into enterprise systems, as SPBEs allow a business object centric view on real-world objects, instead of a pure device centric view. The interdependencies between how currently services in an enterprise system are used and how this can be done in a semantic real-world aware enterprise system are outlined, arguing for the need of semantic services and semantic knowledge repositories. We introduce a lightweight query language, which we use to perform a quantitative analysis of our approach to demonstrate its feasibility.
Resumo:
Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
Abstract Idea Management Systems are web applications that implement the notion of open innovation though crowdsourcing. Typically, organizations use those kind of systems to connect to large communities in order to gather ideas for improvement of products or services. Originating from simple suggestion boxes, Idea Management Systems advanced beyond collecting ideas and aspire to be a knowledge management solution capable to select best ideas via collaborative as well as expert assessment methods. In practice, however, the contemporary systems still face a number of problems usually related to information overflow and recognizing questionable quality of submissions with reasonable time and effort allocation. This thesis focuses on idea assessment problem area and contributes a number of solutions that allow to filter, compare and evaluate ideas submitted into an Idea Management System. With respect to Idea Management System interoperability the thesis proposes theoretical model of Idea Life Cycle and formalizes it as the Gi2MO ontology which enables to go beyond the boundaries of a single system to compare and assess innovation in an organization wide or market wide context. Furthermore, based on the ontology, the thesis builds a number of solutions for improving idea assessment via: community opinion analysis (MARL), annotation of idea characteristics (Gi2MO Types) and study of idea relationships (Gi2MO Links). The main achievements of the thesis are: application of theoretical innovation models for practice of Idea Management to successfully recognize the differentiation between communities, opinion metrics and their recognition as a new tool for idea assessment, discovery of new relationship types between ideas and their impact on idea clustering. Finally, the thesis outcome is establishment of Gi2MO Project that serves as an incubator for Idea Management solutions and mature open-source software alternatives for the widely available commercial suites. From the academic point of view the project delivers resources to undertake experiments in the Idea Management Systems area and managed to become a forum that gathered a number of academic and industrial partners. Resumen Los Sistemas de Gestión de Ideas son aplicaciones Web que implementan el concepto de innovación abierta con técnicas de crowdsourcing. Típicamente, las organizaciones utilizan ese tipo de sistemas para conectar con comunidades grandes y así recoger ideas sobre cómo mejorar productos o servicios. Los Sistemas de Gestión de Ideas lian avanzado más allá de recoger simplemente ideas de buzones de sugerencias y ahora aspiran ser una solución de gestión de conocimiento capaz de seleccionar las mejores ideas por medio de técnicas colaborativas, así como métodos de evaluación llevados a cabo por expertos. Sin embargo, en la práctica, los sistemas contemporáneos todavía se enfrentan a una serie de problemas, que, por lo general, están relacionados con la sobrecarga de información y el reconocimiento de las ideas de dudosa calidad con la asignación de un tiempo y un esfuerzo razonables. Esta tesis se centra en el área de la evaluación de ideas y aporta una serie de soluciones que permiten filtrar, comparar y evaluar las ideas publicadas en un Sistema de Gestión de Ideas. Con respecto a la interoperabilidad de los Sistemas de Gestión de Ideas, la tesis propone un modelo teórico del Ciclo de Vida de la Idea y lo formaliza como la ontología Gi2MO que permite ir más allá de los límites de un sistema único para comparar y evaluar la innovación en un contexto amplio dentro de cualquier organización o mercado. Por otra parte, basado en la ontología, la tesis desarrolla una serie de soluciones para mejorar la evaluación de las ideas a través de: análisis de las opiniones de la comunidad (MARL), la anotación de las características de las ideas (Gi2MO Types) y el estudio de las relaciones de las ideas (Gi2MO Links). Los logros principales de la tesis son: la aplicación de los modelos teóricos de innovación para la práctica de Sistemas de Gestión de Ideas para reconocer las diferenciasentre comu¬nidades, métricas de opiniones de comunidad y su reconocimiento como una nueva herramienta para la evaluación de ideas, el descubrimiento de nuevos tipos de relaciones entre ideas y su impacto en la agrupación de estas. Por último, el resultado de tesis es el establecimiento de proyecto Gi2MO que sirve como incubadora de soluciones para Gestión de Ideas y herramientas de código abierto ya maduras como alternativas a otros sistemas comerciales. Desde el punto de vista académico, el proyecto ha provisto de recursos a ciertos experimentos en el área de Sistemas de Gestión de Ideas y logró convertirse en un foro que reunión para un número de socios tanto académicos como industriales.
Resumo:
Semantic Sensor Web infrastructures use ontology-based models to represent the data that they manage; however, up to now, these ontological models do not allow representing all the characteristics of distributed, heterogeneous, and web-accessible sensor data. This paper describes a core ontological model for Semantic Sensor Web infrastructures that covers these characteristics and that has been built with a focus on reusability. This ontological model is composed of different modules that deal, on the one hand, with infrastructure data and, on the other hand, with data from a specific domain, that is, the coastal flood emergency planning domain. The paper also presents a set of guidelines, followed during the ontological model development, to satisfy a common set of requirements related to modelling domain-specific features of interest and properties. In addition, the paper includes the results obtained after an exhaustive evaluation of the developed ontologies along different aspects (i.e., vocabulary, syntax, structure, semantics, representation, and context).
Resumo:
El aprendizaje basado en problemas se lleva aplicando con éxito durante las últimas tres décadas en un amplio rango de entornos de aprendizaje. Este enfoque educacional consiste en proponer problemas a los estudiantes de forma que puedan aprender sobre un dominio particular mediante el desarrollo de soluciones a dichos problemas. Si esto se aplica al modelado de conocimiento, y en particular al basado en Razonamiento Cualitativo, las soluciones a los problemas pasan a ser modelos que representan el compotamiento del sistema dinámico propuesto. Por lo tanto, la tarea del estudiante en este caso es acercar su modelo inicial (su primer intento de representar el sistema) a los modelos objetivo que proporcionan soluciones al problema, a la vez que adquieren conocimiento sobre el dominio durante el proceso. En esta tesis proponemos KaiSem, un método que usa tecnologías y recursos semánticos para guiar a los estudiantes durante el proceso de modelado, ayudándoles a adquirir tanto conocimiento como sea posible sin la directa supervisión de un profesor. Dado que tanto estudiantes como profesores crean sus modelos de forma independiente, estos tendrán diferentes terminologías y estructuras, dando lugar a un conjunto de modelos altamente heterogéneo. Para lidiar con tal heterogeneidad, proporcionamos una técnica de anclaje semántico para determinar, de forma automática, enlaces entre la terminología libre usada por los estudiantes y algunos vocabularios disponibles en la Web de Datos, facilitando con ello la interoperabilidad y posterior alineación de modelos. Por último, proporcionamos una técnica de feedback semántico para comparar los modelos ya alineados y generar feedback basado en las posibles discrepancias entre ellos. Este feedback es comunicado en forma de sugerencias individualizadas que el estudiante puede utilizar para acercar su modelo a los modelos objetivos en cuanto a su terminología y estructura se refiere. ABSTRACT Problem-based learning has been successfully applied over the last three decades to a diverse range of learning environments. This educational approach consists of posing problems to learners, so they can learn about a particular domain by developing solutions to them. When applied to conceptual modeling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behavior of a dynamic system. Therefore, the learner's task is to move from their initial model, as their first attempt to represent the system, to the target models that provide solutions to that problem while acquiring domain knowledge in the process. In this thesis we propose KaiSem, a method for using semantic technologies and resources to scaffold the modeling process, helping the learners to acquire as much domain knowledge as possible without direct supervision from the teacher. Since learners and experts create their models independently, these will have different terminologies and structure, giving rise to a pool of models highly heterogeneous. To deal with such heterogeneity, we provide a semantic grounding technique to automatically determine links between the unrestricted terminology used by learners and some online vocabularies of the Web of Data, thus facilitating the interoperability and later alignment of the models. Lastly, we provide a semantic-based feedback technique to compare the aligned models and generate feedback based on the possible discrepancies. This feedback is communicated in the form of individualized suggestions, which can be used by the learner to bring their model closer in terminology and structure to the target models.
Resumo:
The Bunge-Wand-Weber (BWW) representation model defines ontological constructs for information systems. According to these constructs the completeness and efficiency of a modeling technique can be defined. Ontology plays an essential role in e-commerce. Using or updating an existing ontology and providing tools to solve any semantic conflicts become essential steps before putting a system online. We use conceptual graphs (CGs) to implement ontologies. This paper evaluates CG capabilities using the BWW representation model. It finds out that CGs are ontologically complete according to Wand and Weber definition. Also it finds out that CGs have construct overload and construct redundancy which can undermine the ontological clarity of CGs. This leads us to build a meta-model to avoid some ontological-unclarity problems. We use some of the BWW constructs to build the meta-model. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The given work is devoted to development of the computer-aided system of semantic text analysis of a technical specification. The purpose of this work is to increase efficiency of software engineering based on automation of semantic text analysis of a technical specification. In work it is offered and investigated the model of the analysis of the text of the technical project is submitted, the attribute grammar of a technical specification, intended for formalization of limited Russian is constructed with the purpose of analysis of offers of text of a technical specification, style features of the technical project as class of documents are considered, recommendations on preparation of text of a technical specification for the automated processing are formulated. The computer-aided system of semantic text analysis of a technical specification is considered. This system consists of the following subsystems: preliminary text processing, the syntactic and semantic analysis and construction of software models, storage of documents and interface.
Resumo:
Indicators are widely used by organizations as a way of evaluating, measuring and classifying organizational performance. As part of performance evaluation systems, indicators are often shared or compared across internal sectors or with other organizations. However, indicators can be vague and imprecise, and also can lack semantics, making comparisons with other indicators difficult. Thus, this paper presents a knowledge model based on an ontology that may be used to represent indicators semantically and generically, dealing with the imprecision and vagueness, and thus facilitating better comparison. Semantic technologies are shown to be suitable for this solution, so that it could be able to represent complex data involved in indicators comparison.
Resumo:
We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.
Resumo:
We address here aspects of the implementation of a memory evolutive system (MES), based on the model proposed by A. Ehresmann and J. Vanbremeersch (2007), by means of a simulated network of spiking neurons with time dependent plasticity. We point out the advantages and challenges of applying category theory for the representation of cognition, by using the MES architecture. Then we discuss the issues concerning the minimum requirements that an artificial neural network (ANN) should fulfill in order that it would be capable of expressing the categories and mappings between them, underlying the MES. We conclude that a pulsed ANN based on Izhikevich`s formal neuron with STDP (spike time-dependent plasticity) has sufficient dynamical properties to achieve these requirements, provided it can cope with the topological requirements. Finally, we present some perspectives of future research concerning the proposed ANN topology.
Resumo:
The canonical representation of speech constitutes a perfect reconstruction (PR) analysis-synthesis system. Its parameters are the autoregressive (AR) model coefficients, the pitch period and the voiced and unvoiced components of the excitation represented as transform coefficients. Each set of parameters may be operated on independently. A time-frequency unvoiced excitation (TFUNEX) model is proposed that has high time resolution and selective frequency resolution. Improved time-frequency fit is obtained by using for antialiasing cancellation the clustering of pitch-synchronous transform tracks defined in the modulation transform domain. The TFUNEX model delivers high-quality speech while compressing the unvoiced excitation representation about 13 times over its raw transform coefficient representation for wideband speech.
Resumo:
In order to analyse the effect of modelling assumptions in a formal, rigorous way, a syntax of modelling assumptions has been defined. The syntax of modelling assumptions enables us to represent modelling assumptions as transformations acting on the set of model equations. The notion of syntactical correctness and semantical consistency of sets of modelling assumptions is defined and methods for checking them are described. It is shown on a simple example how different modelling assumptions act on the model equations and their effect on the differential index of the resulted model is also indicated.
Resumo:
In this work, we present a systematic approach to the representation of modelling assumptions. Modelling assumptions form the fundamental basis for the mathematical description of a process system. These assumptions can be translated into either additional mathematical relationships or constraints between model variables, equations, balance volumes or parameters. In order to analyse the effect of modelling assumptions in a formal, rigorous way, a syntax of modelling assumptions has been defined. The smallest indivisible syntactical element, the so called assumption atom has been identified as a triplet. With this syntax a modelling assumption can be described as an elementary assumption, i.e. an assumption consisting of only an assumption atom or a composite assumption consisting of a conjunction of elementary assumptions. The above syntax of modelling assumptions enables us to represent modelling assumptions as transformations acting on the set of model equations. The notion of syntactical correctness and semantical consistency of sets of modelling assumptions is defined and necessary conditions for checking them are given. These transformations can be used in several ways and their implications can be analysed by formal methods. The modelling assumptions define model hierarchies. That is, a series of model families each belonging to a particular equivalence class. These model equivalence classes can be related to primal assumptions regarding the definition of mass, energy and momentum balance volumes and to secondary and tiertinary assumptions regarding the presence or absence and the form of mechanisms within the system. Within equivalence classes, there are many model members, these being related to algebraic model transformations for the particular model. We show how these model hierarchies are driven by the underlying assumption structure and indicate some implications on system dynamics and complexity issues. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We used event-related functional magnetic resonance imaging (fMRI) to investigate neural responses associated with the semantic interference (SI) effect in the picture-word task. Independent stage models of word production assume that the locus of the SI effect is at the conceptual processing level (Levelt et al. [1999]: Behav Brain Sci 22:1-75), whereas interactive models postulate that it occurs at phonological retrieval (Starreveld and La Heij [1996]: J Exp Psychol Learn Mem Cogn 22:896-918). In both types of model resolution of the SI effect occurs as a result of competitive, spreading activation without the involvement of inhibitory links. These assumptions were tested by randomly presenting participants with trials from semantically-related and lexical control distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt vocalization of picture names occurred in the absence of scanner noise, allowing reaction time (RT) data to be collected. Analysis of the RT data confirmed the SI effect. Regions showing differential hemodynamic responses during the SI effect included the left mid section of the middle temporal gyrus, left posterior superior temporal gyrus, left anterior cingulate cortex, and bilateral orbitomedial prefrontal cortex. Additional responses were observed in the frontal eye fields, left inferior parietal lobule, and right anterior temporal and occipital cortex. The results are interpreted as indirectly supporting interactive models that allow spreading activation between both conceptual processing and phonological retrieval levels of word production. In addition, the data confirm that selective attention/response suppression has a role in resolving the SI effect similar to the way in which Stroop interference is resolved. We conclude that neuroimaging studies can provide information about the neuroanatomical organization of the lexical system that may prove useful for constraining theoretical models of word production. (C) 2001 Wiley-Liss, Inc.