965 resultados para mobilità, wireless, QoS, VoIP, reti eterogenee
Resumo:
Sensor networks are one of the fastest growing areas in broad of a packet is in transit at any one time. In GBR, each node in the network can look at itsneighbors wireless ad hoc networking (? Eld. A sensor node, typically'hop count (depth) and use this to decide which node to forward contains signal-processing circuits, micro-controllers and a the packet on to. If the nodes' power level drops below a wireless transmitter/receiver antenna. Energy saving is one certain level it will increase the depth to discourage trafiE of the critical issue forfor sensor networks since most sensors are equipped with non-rechargeable batteries that have limited lifetime.
Resumo:
In wireless sensor networks, the routing algorithms currently available assume that the sensor nodes are stationary. Therefore when mobility modulation is applied to the wireless sensor networks, most of the current routing algorithms suffer from performance degradation. The path breaks in mobile wireless networks are due to the movement of mobile nodes, node failure, channel fading and shadowing. It is desirable to deal with dynamic topology changes with optimal effort in terms of resource and channel utilization. As the nodes in wireless sensor medium make use of wireless broadcast to communicate, it is possible to make use of neighboring node information to recover from path failure. Cooperation among the neighboring nodes plays an important role in the context of routing among the mobile nodes. This paper proposes an enhancement to an existing protocol for accommodating node mobility through neighboring node information while keeping the utilization of resources to a minimum.
Resumo:
Wireless sensor networks monitor their surrounding environment for the occurrence of some anticipated phenomenon. Most of the research related to sensor networks considers the static deployment of sensor nodes. Mobility of sensor node can be considered as an extra dimension of complexity, which poses interesting and challenging problems. Node mobility is a very important aspect in the design of effective routing algorithm for mobile wireless networks. In this work we intent to present the impact of different mobility models on the performance of the wireless sensor networks. Routing characteristics of various routing protocols for ad-hoc network were studied considering different mobility models. Performance metrics such as end-to-end delay, throughput and routing load were considered and their variations in the case of mobility models like Freeway, RPGM were studied. This work will be useful to figure out the characteristics of routing protocols depending on the mobility patterns of sensors
Resumo:
Sensor networks are one of the fastest growing areas in broadwireless ad hoc networking (?Eld. A sensor node, typically'contains signal-processing circuits, micro-controllers and awireless transmitter/receiver antenna. Energy saving is oneof the critical issue for sensor networks since most sensorsare equipped with non-rechargeable batteries that have limited lifetime.In thiswork, four routing protocols for wireless sensor networks vizFlooding, Gossiping, GBR and LEACH have been simulated using Tiny OS and their power consumption is studied usingcaorwreiredTOoSuStIuMs.ingAMirceaal2izMaotitoens.of these protocols has been carried out using mica 2 motes
Resumo:
Current Trends in Wireless Networking. DigitalLibrary@CUSAT. ...
Resumo:
A compact Co-Planar Waveguide (CPW) fed antenna operating at 2.4GHz with 300MHz 2:1 VSWR bandwidth is presented. Compared to a conventional quarter wavelength CPW fed monopole antenna, the aperture area reduction of the present antenna is 85%. The prototype antenna fabricated on a substrate of εr = 4.4 and thickness 1.6mm is only 22x10x1.6mm3. This much size reduction and impedance matching is achieved by adjusting the signal to ground plane separation and meandering the ground plane of a 50Ω CPW transmission line
Resumo:
A compact coplanar waveguide (CPW) fed uniplanar antenna for Quad-band applications is presented. The Quad-band operation is realized by imposing various current paths in a modified T-shaped radiating element. The antenna covers GSM 900, DCS 1800, IEEE802.11.a, IEEE802.11.b and HiperLAN-2 bands and exhibits good radiation characteristics. This low profile antenna has a dimension of 32mm×31mmwhen printed on a substrate of dielectric constant 4.4 and height 1.6mm. Details of design with experimental and simulated results are presented
Resumo:
This paper presents the design and development of a compact CPW fed quad band antenna. This low profile antenna has a dimension of 32mmx31mm when printed on a substrate of dielectric constant 4.4 and height 1.6mm. The antenna covers GSM 900, DCS 1800, IEEE802.11.a, IEEE802.11.b and HiperLAN2 bands. The antenna exhibits good radiation characteristics with moderate gain
Resumo:
This work presents a triple-mode sigma-delta modulator for three wireless standards namely GSM/WCDMA and Bluetooth. A reconfigurable ADC has been used to meet the wide bandwidth and high dynamic range requirements of the multi-standard receivers with less power consumption. A highly linear sigma-delta ADC which has reduced sensitivity to circuit imperfections has been chosen in our design. This is particularly suitable for wide band applications where the oversampling ratio is low. Simulation results indicate that the modulator achieves a peak SNDR of 84/68/68 dB over a bandwidth of 0.2/3.84/1.5 MHz with an oversampling ratio 128/8/8 in GSM/WCDMA/Bluetooth modes respectively
Resumo:
The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.
Resumo:
In order to successfully deploy multicast services in QoS-aware networks, pricing architectures must take into account the particular characteristics of multicast sessions. With this objective, we propose a charging scheme for QoS multicast services, assuming that the unicast cost of each interconnecting link is determined and that such cost is expressed in terms of quality of service (QoS) parameters. Our scheme allows determining the cost distribution of a multicast session along a cost distribution tree (CDT), and basing such distribution in those pre-existing unicast cost functions. The paper discusses in detail the main characteristics of the problem in a realistic interdomain scenario and how the proposed scheme would contribute to its solution
Resumo:
This paper presents a new charging scheme for cost distribution along a point-to-multipoint connection when destination nodes are responsible for the cost. The scheme focus on QoS considerations and a complete range of choices is presented. These choices go from a safe scheme for the network operator to a fair scheme to the customer. The in-between cases are also covered. Specific and general problems, like the incidence of users disconnecting dynamically is also discussed. The aim of this scheme is to encourage the users to disperse the resource demand instead of having a large number of direct connections to the source of the data, which would result in a higher than necessary bandwidth use from the source. This would benefit the overall performance of the network. The implementation of this task must balance between the necessity to offer a competitive service and the risk of not recovering such service cost for the network operator. Throughout this paper reference to multicast charging is made without making any reference to any specific category of service. The proposed scheme is also evaluated with the criteria set proposed in the European ATM charging project CANCAN
Resumo:
We propose a charging scheme for cost distribution along a multicast tree when cost is the responsibility of the receivers. This scheme focuses on QoS considerations and it does not depend on any specific type of service. The scheme has been designed to be used as a bridge between unicast and multicast services, solving the problem of charging multicast services by means of unicast charging and existing QoS routing mechanisms. We also include a numerical comparison and discussions of the case of non-numerical or relative QoS and on the application to some service examples in order to give a better understanding of the proposal
Resumo:
In this paper a novel methodology aimed at minimizing the probability of network failure and the failure impact (in terms of QoS degradation) while optimizing the resource consumption is introduced. A detailed study of MPLS recovery techniques and their GMPLS extensions are also presented. In this scenario, some features for reducing the failure impact and offering minimum failure probabilities at the same time are also analyzed. Novel two-step routing algorithms using this methodology are proposed. Results show that these methods offer high protection levels with optimal resource consumption
Resumo:
IP based networks still do not have the required degree of reliability required by new multimedia services, achieving such reliability will be crucial in the success or failure of the new Internet generation. Most of existing schemes for QoS routing do not take into consideration parameters concerning the quality of the protection, such as packet loss or restoration time. In this paper, we define a new paradigm to develop new protection strategies for building reliable MPLS networks, based on what we have called the network protection degree (NPD). This NPD consists of an a priori evaluation, the failure sensibility degree (FSD), which provides the failure probability and an a posteriori evaluation, the failure impact degree (FID), to determine the impact on the network in case of failure. Having mathematical formulated these components, we point out the most relevant components. Experimental results demonstrate the benefits of the utilization of the NPD, when used to enhance some current QoS routing algorithms to offer a certain degree of protection