973 resultados para microtensile bond strength test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiphase steels are gaining increasing attention in scientific studies because of the different mechanical and microstructural properties that the material can achieve under different thermomechanical and heat treatments that can be submitted. In the present study, it was made a microstructural study thru the triple attack technic associated with optical microscopy and mechanical characterization of medium carbon AISI 4350 steel thru a tensile strength test, subjected to three routes of heat treatment: annealing, quenching and tempering and isothermal annealing. It was verified the predominance of ferrite-perlite constituent in the specimen annealed, martensitic in the quenched and tempered specimen and bainitic in the annealed isothermally specimen. The annealed material showed a higher ductility, while the hardened and tempered specimen showed the highest hardness and ultimately the bainitic specimen showed a combination of the two abovementioned mechanical properties. Thus, we proved that the multiphase steel SAE 4350 can be a versatile material with great potential for various industrial applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bertuzzi, R, Bueno, S, Pasqua, LA, Acquesta, FM, Batista, MB, Roschel, H, Kiss, MAPDM, Serrao, JC, Tricoli, V, and Ugrinowitsch, C. Bioenergetics and neuromuscular determinants of the time to exhaustion at velocity corresponding to (V) over dotO(2)max in recreational long-distance runners. J Strength Cond Res 26(8): 2096-2102, 2012-The purpose of this study was to investigate the main bioenergetics and neuromuscular determinants of the time to exhaustion (T-lim) at the velocity corresponding to maximal oxygen uptake in recreational long-distance runners. Twenty runners performed the following tests on 5 different days: (a) maximal incremental treadmill test, (b) 2 submaximal tests to determine running economy and vertical stiffness, (c) exhaustive test to measured the T-lim, (d) maximum dynamic strength test, and (e) muscle power production test. Aerobic and anaerobic energy contributions during the T-lim test were also estimated. The stepwise multiple regression method selected 3 independent variables to explain T-lim variance. Total energy production explained 84.1% of the shared variance (p = 0.001), whereas peak oxygen uptake ((V) over dotO(2)peak) measured during T-lim and lower limb muscle power ability accounted for the additional 10% of the shared variance (p = 0.014). These data suggest that the total energy production, (V) over dotO(2)peak, and lower limb muscle power ability are the main physiological and neuromuscular determinants of T-lim in recreational long-distance runners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellulose fibers obtained from the textile industry (lyocell) were investigated as a potential reinforcement for thermoset phenolic matrices, to improve their mechanical properties. Textile cotton fibers were also considered. The fibers were characterized in terms of their chemical composition and analyzed using TGA, SEM, and X-ray. The thermoset (non-reinforced) and composites (phenolic matrices reinforced with randomly dispersed fibers) were characterized using TG, DSC, SEM, DMTA, the Izod impact strength test, and water absorption capacity analysis. The composites that were reinforced with lyocell fibers exhibited impact strengths of nearly 240 Jm(-1), whereas those reinforced with cotton fibers exhibited impact strengths of up to 773 Jm(-1). In addition to the aspect ratio, the higher crystallinity of cotton fibers compared to lyocell likely plays a role in the impact strength of the composite reinforced by the fibers. The SEM images showed that the porosity of the textile fibers allowed good bulk diffusion of the phenolic resin, which, in turn, led to both good adhesion of fiber to matrix and fewer microvoids at the interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This study aimed to compare the micro-tensile bond strength of methacrylate resin systems to a silorane-based restorative system on dentin after 24 hours and six months water storage. Material and Methods: The restorative systems Adper Single Bond 2/Filtek Z350 (ASB), Clearfil SE Bond/Z350 (CF), Adper SE Plus/Z350 (ASEP) and P90 Adhesive System/Filtek P90 (P90) were applied on flat dentin surfaces of 20 third molars (n=5). The restored teeth were sectioned perpendicularly to the bonding interface to obtain sticks (0.8 mm2) to be tested after 24 hours (24 h) and 6 months (6 m) of water storage, in a universal testing machine at 0.5 mm/min. The data was analyzed via two-way Analysis of Variance/Bonferroni post hoc tests at 5% global significance. Results: Overall outcomes did not indicate a statistical difference for the resin systems (p=0.26) nor time (p=0.62). No interaction between material × time was detected (p=0.28). Mean standard-deviation in MPa at 24 h and 6 m were: ASB 31.38 (4.53) and 30.06 (1.95), CF 34.26 (3.47) and 32.75 (4.18), ASEP 29.54 (4.14) and 33.47 (2.47), P90 30.27 (2.03) and 31.34 (2.19). Conclusions: The silorane-based system showed a similar performance to methacrylate-based materials on dentin. All systems were stable in terms of bond strength up to 6 month of water storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adhesive bonding provides solutions to realize cost effective and low weight aircraft fuselage structures, in particular where the Damage Tolerance (DT) is the design criterion. Bonded structures that combine Metal Laminates (MLs) and eventually Selective Reinforcements can guarantee slow crack propagation, crack arrest and large damage capability. To optimize the design exploiting the benefit of bonded structures incorporating selective reinforcement requires reliable analysis tools. The effect of bonded doublers / selective reinforcements is very difficult to be predicted numerically or analytically due to the complexity of the underlying mechanisms and failures modes acting. Reliable predictions of crack growth and residual strength can only be based on sound empirical and phenomenological considerations strictly related to the specific structural concept. Large flat stiffened panels that combine MLs and selective reinforcements have been tested with the purpose of investigating solutions applicable to pressurized fuselages. The large test campaign (for a total of 35 stiffened panels) has quantitatively investigated the role of the different metallic skin concepts (monolithic vs. MLs) of the aluminum, titanium and glass-fiber reinforcements, of the stringers material and cross sections and of the geometry and location of doublers / selective reinforcements. Bonded doublers and selective reinforcements confirmed to be outstanding tools to improve the DT properties of structural elements with a minor weight increase. However the choice of proper materials for the skin and the stringers must be not underestimated since they play an important role as well. A fuselage structural concept has been developed to exploit the benefit of a metal laminate design concept in terms of high Fatigue and Damage Tolerance (F&DT) performances. The structure used laminated skin (0.8mm thick), bonded stringers, two different splicing solutions and selective reinforcements (glass prepreg embedded in the laminate) under the circumferential frames. To validate the design concept a curved panel was manufactured and tested under loading conditions representative of a single aisle fuselage: cyclic internal pressurization plus longitudinal loads. The geometry of the panel, design and loading conditions were tailored for the requirements of the upper front fuselage. The curved panel has been fatigue tested for 60 000 cycles before the introduction of artificial damages (cracks in longitudinal and circumferential directions). The crack growth of the artificial damages has been investigated for about 85 000 cycles. At the end a residual strength test has been performed with a “2 bay over broken frame” longitudinal crack. The reparability of this innovative concept has been taken into account during design and demonstrated with the use of an external riveted repair. The F&DT curved panel test has confirmed that a long fatigue life and high damage tolerance can be achieved with a hybrid metal laminate low weight configuration. The superior fatigue life from metal laminates and the high damage tolerance characteristics provided by integrated selective reinforcements are the key concepts that provided the excellent performances. The weight comparison between the innovative bonded concept and a conventional monolithic riveted design solution showed a significant potential weight saving but the weight advantages shall be traded off with the additional costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study is part of the EU Integrated Project “GEHA – Genetics of Healthy Aging” (Franceschi C et al., Ann N Y Acad Sci. 1100: 21-45, 2007), whose aim is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced age in good cognitive and physical function and in the absence of major age-related diseases. Aims The major aims of this thesis were the following: 1. to outline the recruitment procedure of 90+ Italian siblings performed by the recruiting units of the University of Bologna (UNIBO) and Rome (ISS). The procedures related to the following items necessary to perform the study were described and commented: identification of the eligible area for recruitment, demographic aspects related to the need of getting census lists of 90+siblings, mail and phone contact with 90+ subjects and their families, bioethics aspects of the whole procedure, standardization of the recruitment methodology and set-up of a detailed flow chart to be followed by the European recruitment centres (obtainment of the informed consent form, anonimization of data by using a special code, how to perform the interview, how to collect the blood, how to enter data in the GEHA Phenotypic Data Base hosted at Odense). 2. to provide an overview of the phenotypic characteristics of 90+ Italian siblings recruited by the recruiting units of the University of Bologna (UNIBO) and Rome (ISS). The following items were addressed: socio-demographic characteristics, health status, cognitive assessment, physical conditions (handgrip strength test, chair-stand test, physical ability including ADL, vision and hearing ability, movement ability and doing light housework), life-style information (smoking and drinking habits) and subjective well-being (attitude towards life). Moreover, haematological parameters collected in the 90+ sibpairs as optional parameters by the Bologna and Rome recruiting units were used for a more comprehensive evaluation of the results obtained using the above mentioned phenotypic characteristics reported in the GEHA questionnaire. 3. to assess 90+ Italian siblings as far as their health/functional status is concerned on the basis of three classification methods proposed in previous studies on centenarians, which are based on: • actual functional capabilities (ADL, SMMSE, visual and hearing abilities) (Gondo et al., J Gerontol. 61A (3): 305-310, 2006); • actual functional capabilities and morbidity (ADL, ability to walk, SMMSE, presence of cancer, ictus, renal failure, anaemia, and liver diseases) (Franceschi et al., Aging Clin Exp Res, 12:77-84, 2000); • retrospectively collected data about past history of morbidity and age of disease onset (hypertension, heart disease, diabetes, stroke, cancer, osteopororis, neurological diseases, chronic obstructive pulmonary disease and ocular diseases) (Evert et al., J Gerontol A Biol Sci Med Sci. 58A (3): 232-237, 2003). Firstly these available models to define the health status of long-living subjects were applied to the sample and, since the classifications by Gondo and Franceschi are both based on the present functional status, they were compared in order to better recognize the healthy aging phenotype and to identify the best group of 90+ subjects out of the entire studied population. 4. to investigate the concordance of health and functional status among 90+ siblings in order to divide sibpairs in three categories: the best (both sibs are in good shape), the worst (both sibs are in bad shape) and an intermediate group (one sib is in good shape and the other is in bad shape). Moreover, the evaluation wanted to discover which variables are concordant among siblings; thus, concordant variables could be considered as familiar variables (determined by the environment or by genetics). 5. to perform a survival analysis by using mortality data at 1st January 2009 from the follow-up as the main outcome and selected functional and clinical parameters as explanatory variables. Methods A total of 765 90+ Italian subjects recruited by UNIBO (549 90+ siblings, belonging to 258 families) and ISS (216 90+ siblings, belonging to 106 families) recruiting units are included in the analysis. Each subject was interviewed according to a standardized questionnaire, comprising extensively utilized questions that have been validated in previous European studies on elderly subjects and covering demographic information, life style, living conditions, cognitive status (SMMSE), mood, health status and anthropometric measurements. Moreover, subjects were asked to perform some physical tests (Hand Grip Strength test and Chair Standing test) and a sample of about 24 mL of blood was collected and then processed according to a common protocol for the preparation and storage of DNA aliquots. Results From the analysis the main findings are the following: - a standardized protocol to assess cognitive status, physical performances and health status of European nonagenarian subjects was set up, in respect to ethical requirements, and it is available as a reference for other studies in this field; - GEHA families are enriched in long-living members and extreme survival, and represent an appropriate model for the identification of genes involved in healthy aging and longevity; - two simplified sets of criteria to classify 90+ sibling according to their health status were proposed, as operational tools for distinguishing healthy from non healthy subjects; - cognitive and functional parameters have a major role in categorizing 90+ siblings for the health status; - parameters such as education and good physical abilities (500 metres walking ability, going up and down the stairs ability, high scores at hand grip and chair stand tests) are associated with a good health status (defined as “cognitive unimpairment and absence of disability”); - male nonagenarians show a more homogeneous phenotype than females, and, though far fewer in number, tend to be healthier than females; - in males the good health status is not protective for survival, confirming the male-female health survival paradox; - survival after age 90 was dependent mainly on intact cognitive status and absence of functional disabilities; - haemoglobin and creatinine levels are both associated with longevity; - the most concordant items among 90+ siblings are related to the functional status, indicating that they contain a familiar component. It is still to be investigated at what level this familiar component is determined by genetics or by environment or by the interaction between genetics, environment and chance (and at what level). Conclusions In conclusion, we could state that this study, in accordance with the main objectives of the whole GEHA project, represents one of the first attempt to identify the biological and non biological determinants of successful/unsuccessful aging and longevity. Here, the analysis was performed on 90+ siblings recruited in Northern and Central Italy and it could be used as a reference for others studies in this field on Italian population. Moreover, it contributed to the definition of “successful” and “unsuccessful” aging and categorising a very large cohort of our most elderly subjects into “successful” and “unsuccessful” groups provided an unrivalled opportunity to detect some of the basic genetic/molecular mechanisms which underpin good health as opposed to chronic disability. Discoveries in the topic of the biological determinants of healthy aging represent a real possibility to identify new markers to be utilized for the identification of subgroups of old European citizens having a higher risk to develop age-related diseases and disabilities and to direct major preventive medicine strategies for the new epidemic of chronic disease in the 21st century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Székesfehérvár Ruin Garden is a unique assemblage of monuments belonging to the cultural heritage of Hungary due to its important role in the Middle Ages as the coronation and burial church of the Kings of the Hungarian Christian Kingdom. It has been nominated for “National Monument” and as a consequence, its protection in the present and future is required. Moreover, it was reconstructed and expanded several times throughout Hungarian history. By a quick overview of the current state of the monument, the presence of several lithotypes can be found among the remained building and decorative stones. Therefore, the research related to the materials is crucial not only for the conservation of that specific monument but also for other historic structures in Central Europe. The current research is divided in three main parts: i) description of lithologies and their provenance, ii) physical properties testing of historic material and iii) durability tests of analogous stones obtained from active quarries. The survey of the National Monument of Székesfehérvár, focuses on the historical importance and the architecture of the monument, the different construction periods, the identification of the different building stones and their distribution in the remaining parts of the monument and it also included provenance analyses. The second one was the in situ and laboratory testing of physical properties of historic material. As a final phase samples were taken from local quarries with similar physical and mineralogical characteristics to the ones used in the monument. The three studied lithologies are: fine oolitic limestone, a coarse oolitic limestone and a red compact limestone. These stones were used for rock mechanical and durability tests under laboratory conditions. The following techniques were used: a) in-situ: Schmidt Hammer Values, moisture content measurements, DRMS, mapping (construction ages, lithotypes, weathering forms) b) laboratory: petrographic analysis, XRD, determination of real density by means of helium pycnometer and bulk density by means of mercury pycnometer, pore size distribution by mercury intrusion porosimetry and by nitrogen adsorption, water absorption, determination of open porosity, DRMS, frost resistance, ultrasonic pulse velocity test, uniaxial compressive strength test and dynamic modulus of elasticity. The results show that initial uniaxial compressive strength is not necessarily a clear indicator of the stone durability. Bedding and other lithological heterogeneities can influence the strength and durability of individual specimens. In addition, long-term behaviour is influenced by exposure conditions, fabric and, especially, the pore size distribution of each sample. Therefore, a statistic evaluation of the results is highly recommended and they should be evaluated in combination with other investigations on internal structure and micro-scale heterogeneities of the material, such as petrographic observation, ultrasound pulse velocity and porosimetry. Laboratory tests used to estimate the durability of natural stone may give a good guidance to its short-term performance but they should not be taken as an ultimate indication of the long-term behaviour of the stone. The interdisciplinary study of the results confirms that stones in the monument show deterioration in terms of mineralogy, fabric and physical properties in comparison with quarried stones. Moreover stone-testing proves compatibility between quarried and historical stones. Good correlation is observed between the non-destructive-techniques and laboratory tests results which allow us to minimize sampling and assessing the condition of the materials. Concluding, this research can contribute to the diagnostic knowledge for further studies that are needed in order to evaluate the effect of recent and future protective measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der erste Teil dieser Arbeit befasst sich mit der Kinetik der Reaktion des OH-Radikals mit Glykolaldehyd (HOCH2CHO). Die Geschwindigkeitskonstante k1 wurde für diese Reaktion temperaturabhängig bestimmt. Durch gepulste Photolyse wurden OH-Radikale erzeugt. Anschließend wurde die laserinduzierte Fluoreszenz der OH-Radikale bei 309 nm detektiert. Die ermittelte Geschwindigkeitskonstante k1 für die Reaktion von OH mit HOCH2CHO von (8,0 ± 0,8) x 10-12 cm3 Teilchen-1 s-1 erweist sich für den Temperaturbereich von 240 K < T < 362 K als temperaturunabhängig. Zwischen 60 und 250 Torr kann zudem keine Druckabhängigkeit für k1 beobachtet werden. Die unerwartet niedrigere Geschwindigkeitskonstante für die betrachtete Reaktion im Vergleich zur Reaktion von OH mit CH3CHO konnte anhand von Überlegungen zur Korrelation zwischen der C-H-Bindungsstärke und dem H-Abstraktionskanal erklärt werden. Im zweiten Teil dieser Arbeit wurde die Photochemie von Aceton (CH3C(O)CH3), Methylethylketon (C2H5C(O)CH3, MEK) und Acetylbromid (CH3C(O)Br) betrachtet. Für die Photolyse von Aceton (bei 248 nm und 266 nm), MEK (bei 248 nm) und Acetylbromid (bei 248 nm) wurden bei 298 ± 3 K druckabhängig zwischen 5 und 1600 Torr N2 Quantenausbeuten für die Methylbildung (Phi(CH3)) bestimmt. Nach gepulster Photolyse der betrachteten Moleküle wurden die transienten Absorptionssignale der Methylradikale bei 216,4 nm verfolgt. Die Quantenausbeuten wurden relativ zur Photolyse von Methyliodid (CH3I) unter gleichen Reaktionsbedingungen ermittelt. Die erhaltenen Quantenausbeuten für CH3-Radikale nehmen für die beiden Systeme Aceton / 248 nm (Phi(CH3, Aceton) = 1,42 – 0,99) und MEK / 248 nm (Phi(CH3, MEK) = 0,45 – 0,19) druckabhängig zu hohen Drücken ab. Die Druckabhängigkeit von Phi(CH3) wird auf die Konkurrenz zwischen Stoßrelaxation und Dissoziation der schwingungsangeregten Acetylradikale (CH3CO#) zurückgeführt. Für das System Aceton / 266 nm wird keine Druckabhängigkeit von Phi(CH3) = 0,93 ± 0,1 beobachtet. Dies wird damit erklärt, dass CH3CO# nicht genügend Energie besitzt, um die Barriere zur Dissoziation zu überschreiten. Bei der Photolyse von Acetylbromid bei 248 nm wird druckunabhängig Phi(CH3) = 0,92 ± 0,10 bestimmt. In diesem System dissoziieren die schwingungsangeregten Acetylradikale bei allen Drücken vollständig. Bei 266 nm wurde die Gesamtquantenausbeute für die Photodissoziation von Aceton (Phi(diss, 266nm)) bestimmt. Die nach Photolyse erhaltenen Methyl - und Acetylradikale wurden nach Titration mit Br2 durch die Resonanzfluoreszenz der Bromatome detektiert. Phi(diss, 266nm) wurde mit 0,92 ± 0,07 bestimmt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feste Lösungen homogen dispergierter Wirkstoffmoleküle in amorphen Polymermatrizen sind wichtige Materialien in vielen pharmazeutischen Anwendungen, bei denen eine kontrollierte Abgabe wasserunlöslicher Wirkstoffe in wässrige Systeme eine Rolle spielt. Die intermolekulare Bindungs-stärke zwischen Polymer- und Wirkstoffmolekülgruppen bestimmt die Stabilität der festen Lösung und steuert somit die biologische Aktivität der Wirkstoffmoleküle. In festen Lösungen, die aus acryl-säurehaltigen Copolymeren (Protonendonoren) und basischen Wirkstoffmolekülen (Protonenakzepto-ren) hergestellt werden, sind intermolekulare Wasserstoffbrücken zwischen den Systemkomponenten Triebkraft für die Bildung einer stabilen homogenen Dispersion und für die Entstehung struktureller Merkmale zwischen den Molekülgruppen der Systemkomponenten. Zudem ist die Bindungsstärke der Wasserstoffbrücken im Hinblick auf die kontrollierte Abgabe der Wirkstoffe von Bedeutung. Da dynamische chemische Gleichgewichte bei der Bildung der Wasserstoffbrücken eine wichtige Rolle spielen müssen neben strukturellen Parametern auch dynamische Faktoren beleuchtet werden. Ziel dieser Arbeit ist neben der Ermittlung von intermolekularen Bindungsstärken vor allem die Identifika-tion struktureller Verhältnisse zwischen den Systemkomponenten auf molekularer Ebene. Die Be-stimmung der Abhängigkeit dieser Parameter von der Struktur der verwendeten Polymere und einer Vielzahl weiterer Einflüsse wie z.B. Feuchtigkeit, Lagerdauer oder Wirkstoffkonzentration soll ein kontrolliertes Design fester Lösungen mit definierten anwendungsspezifischen Eigenschaften ermögli-chen. Temperaturabhängige 1H-Festkörper-MAS-NMR (Magic Angle Spinning Nuclear Magnetic Resonance) Experimente an festen Lösungen mit unterschiedlichen Copolymer-Zusammensetzungen weisen die Existenz dynamischer chemischer Gleichgewichte in den komplexen Wasserstoffbrücken-netzwerken nach. Veränderungen in der chemischen Verschiebung und in der Linienform der Reso-nanzlinien acider Protonen erlauben einen tiefen Einblick in die Architektur dieser Netzwerke und legen die Bindungsverhältnisse unter Berücksichtigung der Polymerchemie und der Mobilität der Systemkomponenten dar, wobei die Befunde mithilfe quantenchemischer Rechnungen untermauert werden können. Die Gegenwart acider Protonen ermöglicht einen einfachen 1H-2H-Austausch, wor-aufhin mithilfe rotorsynchronisierter temperaturabhängiger 2H-MAS-NMR Experimente die Wasser-stoffbrückenbindungsstärke bestimmt werden kann. Mit 1H-1H-Korrelationsexperimenten (Doppelquantenspektroskopie) stehen Methoden für die Bestimmung homonuklearer dipolarer 1H-1H-Kopplungen zur Verfügung, die strukturelle Aussagen aufgrund von bevorzugten räumlichen Kontak-ten bestimmter Molekülgruppen ermöglichen. Weiterhin können diese Experimente verwendet werden, um Wasserstoffbrücken zwischen Polymergruppen von Polymer-Wirkstoff-Wasserstoffbrücken zu unterscheiden, wodurch eine quantitative Beschreibung des Bindungsnetzwerks und der Konkurrenz-prozesse zwischen den einzelnen wasserstoffverbrückten Spezies ermöglicht wird. Eine Kristallisation der Wirkstoffmoleküle ist in vielen Anwendungen unerwünscht, da sie die biologische Verfügbarkeit des Wirkstoffs reduzieren. Mit 1H-Festkörper-MAS-NMR Experimenten können kristalline von amorph dispergierten Wirkstoffmolekülen unterschieden werden, wodurch eine Quantifizierung der Destabilisierungsprozesse ermöglicht wird, die durch Exposition der festen Lösungen mit Wasserdampf ausgelöst werden können. Die Zeit- und Konzentrationsabhängigkeit der Wasseraufnahme kann mit NMR-Experimenten verfolgt werden, wobei unterschiedlich mobile Was-serspezies an unterschiedlichen Bindungsorten identifiziert werden können, was zum molekularen Verständnis der Destabilisierungsprozesse beiträgt. Zusätzlich wird die Mobilität der Wirkstoffmole-küle bestimmt, die sich – wie auch die Wirkstoffkonzentration - als wichtige Größe in der Beschrei-bung der Destabilisierung erweist. Aufbauend auf den Beobachtungen wird ein Zusammenhang zwischen der Copolymerzusammensetzung und einer kritischen Wirkstoffkonzentration hergestellt, der für die Anwendungen amorpher fester Lösungen in biologischen Systemen von großer Bedeutung ist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexity and challenge created by asphalt material motivates researchers and engineers to investigate the behavior of this material to develop a better understanding, and improve the performance of asphalt pavement. Over decades, a wide range of modification at macro, meso, micro and nano scales have been conducted to improve the performance of asphalt pavement. This study was initiated to utilize the newly developed asphalt modifier pellets. These pellets consisted of different combinations of calcium carbonate (CaCO3), linear low-density polyethylene (LLDPE) and titanate coupling agent (CA) to improve the asphalt binder as well as pavement performance across a wide range of temperature and loading pace. These materials were used due to their unique characteristics and promising findings from various industries, especially as modifiers in pavement material. The challenge is to make sure the CaCO3 disperses very well in the mixture. The rheological properties of neat asphalt binder PG58-28 and modified asphalt binder (PG58-28/LLDPE, PG58-28/CaCO3, PG58-28/CaCO3/LLDPE, and PG58-28/CaCO3/LLDPE/CA), were determined using rotational viscometer (RV) test, dynamic shear rheometer (DSR) test and bending beam rheometer test. In the DSR test, the specimens were evaluated using frequency sweep and multiple shear creep recovery (MSCR). The asphalt mixtures (aggregate/PG58-28, aggregate/ PG58-28/LLDPE, aggregate/PG58-28/CaCO3, aggregate/PG58-28/LLDPE/CaCO3 and aggregate/PG58-28/LLDPE/CaCO3/CA) were evaluated using the four point beam fatigue test, the dynamic modulus (E*) test, and tensile strength test (to determines tensile strength ratio, TSR). The RV test results show that all modified asphalt binders have a higher viscosity compared to the neat asphalt binder (PG58-28). Based on the Jnr results (using MSCR test), all the modified asphalt binders have a better resistance to rutting compared to the neat asphalt binder. A higher modifier contents have resulted in a better recovery percentage of asphalt binder (higher resistance to rutting), except the specimens prepared using PECC’s modified asphalt binder (PG58-28/CaCO3/LLDPE). The BBR test results show that all the modified asphalt binders have shown comparable performance in term of resistance to low temperature cracking, except the specimen prepared using the LLDPE modifier. Overall, 5 wt% LLDPE modified asphalt binder was found to be the best asphalt binder in terms of resistance to rutting. Meanwhile, 3 wt% PECC-1CA’s modified asphalt binder can be considered as the best (in terms of resistance to thermal cracking) with the lowest mean critical cracking temperature. The appearance of CaCO3 was found useful merely in improving the resistance to fatigue cracking of asphalt mixture. However, application of LLDPE has undermined the fatigue life of asphalt mixtures. Adding LLDPE and coupling agent throughout this study does not sufficiently help in terms of elastic behavior which essential to enhance the resistance to fatigue cracking. In contrast, application of LLDPE has increased the indirect tensile strength values and TSR of asphalt mixtures, indicates a better resistance to moisture damage. The usage of the coupling agent does not change the behavior of the asphalt mixture, which could be due to imbalance effects resulted by combination of LLDPE and CaCO3 in asphalt binder. Further investigations without incorporating CaCO3 should be conducted further. To investigate the feasibility of using LLDPE and coupling agent as modifiers in asphalt pavements, more research should be conducted on different percentages of LLDPE (less than 3 wt%), and at the higher and w wider range of coupling agent content, from 3 wt% to 7 wt% based on the polymer mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To determine the impact of long-term storage on adhesion between titanium and zirconia using resin cements. MATERIALS AND METHODS Titanium grade 4 blocks were adhesively fixed onto zirconia disks with four resin cements: Panavia F 2.0 (Kuraray Europe), GC G-Cem (GC Europe), RelyX Unicem (3M ESPE), and SmartCem 2 (Dentsply DeguDent). Shear bond strength was determined after storage in a water bath for 24 h, 16, 90, and 150 days at 37°C, and after 6000 cycles between 5°C and 55°C. Fracture behavior was evaluated using scanning electron microscopy. RESULTS After storage for at least 90 days and after thermocycling, GC G-Cem (16.9 MPa and 15.1 MPa, respectively) and RelyX Unicem (10.8 MPa and 15.7 MPa, respectively) achieved higher shear bond strength compared to SmartCem 2 (7.1 MPa and 4.0 MPa, respectively) and Panavia F2 (4.1 MPa and 7.4 MPa, respectively). At day 150, GC G-Cem and RelyX Unicem caused exclusively mixed fractures. SmartCem 2 and Panavia F2 showed adhesive fractures in one-third of the cases; all other fractures were of mixed type. After 24 h (GC G-Cem: 26.0, RelyX Unicem: 20.5 MPa, SmartCem 2: 16.1 MPa, Panavia F2: 23.6 MPa) and 16 days (GC G-Cem: 12.8, RelyX Unicem: 14.2 MPa, SmartCem 2: 9.8 MPa, Panavia F2: 14.7 MPa) of storage, shear bond strength was similar among the four cements. CONCLUSION Long-term storage and thermocycling differentially affects the bonding of resin cement between titanium and zirconia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To investigate substance loss and bond strength capacity of sclerotic, non-carious cervical dentin after airborne-particle abrasion or diamond bur preparation. Methods: Fifteen non-sclerotic dentin specimens were made from crowns of extracted human incisors of which the labial surfaces had been ground with silicon carbide papers (non-sclerotic control; Group 1). Forty-five sclerotic dentin specimens (n=15/group) were made from the labial, non-carious cervical root part of extracted human incisors and underwent either no pre-treatment (sclerotic control; Group 2), pre-treatment with airborne-particle abrasion (CoJet Prep [3M ESPE] and 50 µm aluminium oxide; Group 3), or with diamond bur preparation (40 µm grit size; Group 4). Substance loss after pre-treatment was measured in Groups 3 and 4. Subsequently, Scotchbond Universal (3M ESPE) and resin composite (CeramX [DENTSPLY DeTrey]) were applied on the treated dentin surfaces. The specimens were stored at 37°C and 100% humidity for 24 h. After storage, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Wilcoxon rank sum tests. Results: Substance loss (medians) was 19 µm in Group 3 and 113 µm in Group 4. SBS-values (MPa; medians) in Group 2 (9.24) were significantly lower than in Group 1 (13.15; p=0.0069), Group 3 (13.05; p=0.01), and Group 4 (13.02; p=0.0142). There were no significant differences in SBS between Groups 1, 3, and 4 (p≥0.8063). Conclusion: Airborne-particle abrasion and diamond bur preparation restored bond strength of Scotchbond Universal to sclerotic dentin to the level of non-sclerotic dentin, with airborne-particle abrasion being less invasive than diamond bur preparation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the effect of airborne-particle abrasion or diamond bur preparation as pretreatment steps of non-carious cervical root dentin regarding substance loss and bond strength. Methods: 45 dentin specimens produced from crowns of extracted human incisors by grinding the labial surfaces with silicon carbide papers (control) were treated with one of three adhesive systems (Group 1A-C; A: OptiBond FL, B: Clearfil SE Bond, or C: Scotchbond Universal; n=15/adhesive system). Another 135 dentin specimens (n=15/group) produced from the labial, non-carious cervical root part of extracted human incisors were treated with one of the adhesive systems after either no pre-treatment (Group 2A-C), pre-treatment with airborne-particle abrasion (CoJet Prep and 50 µm aluminum oxide powder; Group 3A-C), or pre-treatment with diamond bur preparation (40 µm grit size; Group 4A-C). Substance loss caused by the pre-treatment was measured in Groups 3 and 4. After treatment with the adhesive systems, resin composite was applied and all specimens were stored (37°C, 100% humidity, 24 hours) until measurement of microshear bond strength (µSBS). Data were analyzed with a nonparametric ANOVA followed by Kruskal-Wallis and Wilcoxon rank sum tests (level of significance: alpha=0.05). Results: Overall substance loss was significantly lower in Group 3 (median: 19 µm) than in Group 4 (median: 113 µm; p<0.0001). There were no significant differences in µSBS between the adhesive systems (A-C) in Group 1, Group 3, and Group 4 (p>=0.133). In Group 2, OptiBond FL (Group 2A) and Clearfil SE Bond (Group 2B) yielded significantly higher µSBS than Scotchbond Universal (Group 2C; p<=0.032). For OptiBond FL and Clearfil SE Bond, there were no significant differences in µSBS between the ground crown dentin and the non-carious cervical root dentin regardless of any pre-treatment of the latter (both p=0.661). For Scotchbond Universal, the µSBS to non-carious cervical root dentin without pre-treatment was significantly lower than to ground crown dentin and to non-carious cervical root dentin pre-treated with airborne-particle abrasion or diamond bur preparation p<=0.014).