948 resultados para microbial conversion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial exposure following birth profoundly impacts mammalian immune system development. Microbiota alterations are associated with increased incidence of allergic and autoimmune disorders with elevated serum IgE as a hallmark. The previously reported abnormally high serum IgE levels in germ-free mice suggests that immunoregulatory signals from microbiota are required to control basal IgE levels. We report that germ-free mice and those with low-diversity microbiota develop elevated serum IgE levels in early life. B cells in neonatal germ-free mice undergo isotype switching to IgE at mucosal sites in a CD4 T-cell- and IL-4-dependent manner. A critical level of microbial diversity following birth is required in order to inhibit IgE induction. Elevated IgE levels in germ-free mice lead to increased mast-cell-surface-bound IgE and exaggerated oral-induced systemic anaphylaxis. Thus, appropriate intestinal microbial stimuli during early life are critical for inducing an immunoregulatory network that protects from induction of IgE at mucosal sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Altered microbiota composition, changes in immune responses and impaired intestinal barrier functions are observed in IBD. Most of these features are controlled by proteases and their inhibitors to maintain gut homeostasis. Unrestrained or excessive proteolysis can lead to pathological gastrointestinal conditions. The aim was to validate the identified protease IBD candidates from a previously performed systematic review through a genetic association study and functional follow-up. DESIGN: We performed a genetic association study in a large multicentre cohort of patients with Crohn's disease (CD) and UC from five European IBD referral centres in a total of 2320 CD patients, 2112 UC patients and 1796 healthy controls. Subsequently, we did an extensive functional assessment of the candidate genes to explore their causality in IBD pathogenesis. RESULTS: Ten single nucleotide polymorphisms (SNPs) in four genes were significantly associated with CD: CYLD, USP40, APEH and USP3. CYLD was the most significant gene with the intronically located rs12324931 the strongest associated SNP (pFDR=1.74e-17, OR=2.24 (1.83 to 2.74)). Five SNPs in four genes were significantly associated with UC: USP40, APEH, DAG1 and USP3. CYLD, as well as some of the other associated genes, is part of the ubiquitin proteasome system (UPS). We therefore determined if the IBD-associated adherent-invasive Escherichia coli (AIEC) can modulate the UPS functioning. Infection of intestinal epithelial cells with the AIEC LF82 reference strain modulated the UPS turnover by reducing poly-ubiquitin conjugate accumulation, increasing 26S proteasome activities and decreasing protein levels of the NF-κB regulator CYLD. This resulted in IκB-α degradation and NF-κB activation. This activity was very important for the pathogenicity of AIEC since decreased CYLD resulted in increased ability of AIEC LF82 to replicate intracellularly. CONCLUSIONS: Our results reveal the UPS, and CYLD specifically, as an important contributor to IBD pathogenesis, which is favoured by both genetic and microbial factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feather pecking in laying hens is a serious behavioral problem that is often associated with feather eating. The intake of feathers may influence the gut microbiota and its metabolism. The aim of this study was to determine the effect of 2 different diets, with or without 5% ground feathers, on the gut microbiota and the resulting microbial fermentation products and to identify keratin-degrading bacteria in chicken digesta. One-day-old Lohmann-Selected Leghorn chicks were divided into 3 feeding groups: group A (control), B (5% ground feathers in the diet), and C, in which the control diet was fed until wk 12 and then switched to the 5% feather diet to study the effect of time of first feather ingestion. The gut microbiota was analyzed by cultivation and denaturing gradient gel electrophoresis of ileum and cecum digesta. Short-chain fatty acids, ammonia, and lactate concentrations were measured as microbial metabolites. The concentration of keratinolytic bacteria increased after feather ingestion in the ileum (P < 0.001) and cecum (P = 0.033). Bacterial species that hydrolyzed keratin were identified as Enterococcus faecium, Lactobacillus crispatus, Lactobacillus reuteri-like species (97% sequence homology), and Lactobacillus salivarius-like species (97% sequence homology). Molecular analysis of cecal DNA extracts showed that the feather diet lowered the bacterial diversity indicated by a reduced richness (P < 0.001) and shannon (P = 0.012) index. The pattern of microbial metabolites indicated some changes, especially in the cecum. This study showed that feather intake induced an adaptation of the intestinal microbiota in chickens. It remains unclear to what extent the changed metabolism of the microbiota reflects the feather intake and could have an effect on the behavior of the hens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

par Aimé Palliére

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two polycrystalline diamond surfaces, manufactured by chemical vapour deposition (CVD) technique, are investigated regarding their applicability as charge state conversion surfaces (CS) for use in a low energy neutral atom imaging instrument in space research. The capability of the surfaces for converting neutral atoms into negative ions via surface ionisation processes was measured for hydrogen and oxygen with particle energies in the range from 100 eV to 1 keV and for angles of incidence between 6 deg and 15 deg. We observed surface charging during the surface ionisation processes for one of the CVD samples due to low electrical conductivity of the material. Measurements on the other CVD diamond sample resulted in ionisation efficiencies of ~2 % for H and up to 12 % for O. Analysis of the angular scattering revealed very narrow and almost circular scattering distributions. Comparison of the results with the data of the CS of the IBEX-Lo sensor shows that CVD diamond has great potential as CS material for future space missions.