994 resultados para melt flow index
Resumo:
We present a novel hybrid (or multiphysics) algorithm, which couples pore-scale and Darcy descriptions of two-phase flow in porous media. The flow at the pore-scale is described by the Navier?Stokes equations, and the Volume of Fluid (VOF) method is used to model the evolution of the fluid?fluid interface. An extension of the Multiscale Finite Volume (MsFV) method is employed to construct the Darcy-scale problem. First, a set of local interpolators for pressure and velocity is constructed by solving the Navier?Stokes equations; then, a coarse mass-conservation problem is constructed by averaging the pore-scale velocity over the cells of a coarse grid, which act as control volumes; finally, a conservative pore-scale velocity field is reconstructed and used to advect the fluid?fluid interface. The method relies on the localization assumptions used to compute the interpolators (which are quite straightforward extensions of the standard MsFV) and on the postulate that the coarse-scale fluxes are proportional to the coarse-pressure differences. By numerical simulations of two-phase problems, we demonstrate that these assumptions provide hybrid solutions that are in good agreement with reference pore-scale solutions and are able to model the transition from stable to unstable flow regimes. Our hybrid method can naturally take advantage of several adaptive strategies and allows considering pore-scale fluxes only in some regions, while Darcy fluxes are used in the rest of the domain. Moreover, since the method relies on the assumption that the relationship between coarse-scale fluxes and pressure differences is local, it can be used as a numerical tool to investigate the limits of validity of Darcy's law and to understand the link between pore-scale quantities and their corresponding Darcy-scale variables.
Resumo:
Monocytes are central mediators in the development of atherosclerotic plaques. They circulate in blood and eventually migrate into tissue including the vessel wall where they give rise to macrophages and dendritic cells. The existence of monocyte subsets with distinct roles in homeostasis and inflammation suggests specialization of function. These subsets are identified based on expression of the CD14 and CD16 markers. Routinely applicable protocols remain elusive, however. Here, we present an optimized four-color flow cytometry protocol for analysis of human blood monocyte subsets using a specific PE-Cy5-conjugated monoclonal antibody (mAb) to HLA-DR, a PE-Cy7-conjugated mAb to CD14, a FITC-conjugated mAb to CD16, and PE-conjugated mAbs to additional markers relevant to monocyte function. Classical CD14(+)CD16(-) monocytes (here termed "Mo1" subset) expressed high CCR2, CD36, CD64, and CD62L, but low CX(3)CR1, whereas "nonclassical" CD14(lo)CD16(+) monocytes (Mo3) essentially showed the inverse expression pattern. CD14(+)CD16(+) monocytes (Mo2) expressed high HLA-DR, CD36, and CD64. In patients with stable coronary artery disease (n = 13), classical monocytes were decreased, whereas "nonclassical" monocytes were increased 90% compared with healthy subjects with angiographically normal coronary arteries (n = 14). Classical monocytes from CAD patients expressed higher CX(3)CR1 and CCR2 than controls. Thus, stable CAD is associated with expansion of the nonclassical monocyte subset and increased expression of inflammatory markers on monocytes. Flow cytometric analysis of monocyte subsets and marker expression may provide valuable information on vascular inflammation. This may translate into the identification of monocyte subsets as selective therapeutic targets, thus avoiding adverse events associated with indiscriminate monocyte inhibition.
Resumo:
n this paper the iterative MSFV method is extended to include the sequential implicit simulation of time dependent problems involving the solution of a system of pressure-saturation equations. To control numerical errors in simulation results, an error estimate, based on the residual of the MSFV approximate pressure field, is introduced. In the initial time steps in simulation iterations are employed until a specified accuracy in pressure is achieved. This initial solution is then used to improve the localization assumption at later time steps. Additional iterations in pressure solution are employed only when the pressure residual becomes larger than a specified threshold value. Efficiency of the strategy and the error control criteria are numerically investigated. This paper also shows that it is possible to derive an a-priori estimate and control based on the allowed pressure-equation residual to guarantee the desired accuracy in saturation calculation.
Resumo:
PURPOSE: To determine if, compared to pressure support (PS), neurally adjusted ventilatory assist (NAVA) reduces patient-ventilator asynchrony in intensive care patients undergoing noninvasive ventilation with an oronasal face mask. METHODS: In this prospective interventional study we compared patient-ventilator synchrony between PS (with ventilator settings determined by the clinician) and NAVA (with the level set so as to obtain the same maximal airway pressure as in PS). Two 20-min recordings of airway pressure, flow and electrical activity of the diaphragm during PS and NAVA were acquired in a randomized order. Trigger delay (T(d)), the patient's neural inspiratory time (T(in)), ventilator pressurization duration (T(iv)), inspiratory time in excess (T(iex)), number of asynchrony events per minute and asynchrony index (AI) were determined. RESULTS: The study included 13 patients, six with COPD, and two with mixed pulmonary disease. T(d) was reduced with NAVA: median 35 ms (IQR 31-53 ms) versus 181 ms (122-208 ms); p = 0.0002. NAVA reduced both premature and delayed cyclings in the majority of patients, but not the median T(iex) value. The total number of asynchrony events tended to be reduced with NAVA: 1.0 events/min (0.5-3.1 events/min) versus 4.4 events/min (0.9-12.1 events/min); p = 0.08. AI was lower with NAVA: 4.9 % (2.5-10.5 %) versus 15.8 % (5.5-49.6 %); p = 0.03. During NAVA, there were no ineffective efforts, or late or premature cyclings. PaO(2) and PaCO(2) were not different between ventilatory modes. CONCLUSION: Compared to PS, NAVA improved patient ventilator synchrony during noninvasive ventilation by reducing T(d) and AI. Moreover, with NAVA, ineffective efforts, and late and premature cyclings were absent.
Resumo:
Working memory, the ability to store and simultaneously manipulate information, is affected in several neuropsychiatric disorders which lead to severe cognitive and functional deficits. An electrophysiological marker for this process could help identify early cerebral function abnormalities. In subjects performing working memory-specific n-back tasks, event-related potential analysis revealed a positive-negative waveform (PNwm) component modulated in amplitude by working memory load. It occurs in the expected time range for this process, 140-280 ms after stimulus onset, superimposed on the classical P200 and N200 components. Independent Component Analysis extracted two functional components with latencies and topographical scalp distributions similar to the PNwm. Our results imply that the PNwm represents a new electrophysiological index for working memory load in humans.
Resumo:
AIMS/HYPOTHESIS: High- vs low-glycaemic index (GI) diets unfavourably affect body fat mass and metabolic markers in rodents. Different effects of these diets could be age-dependent, as well as mediated, in part, by carbohydrate-induced stimulation of glucose-dependent insulinotrophic polypeptide (GIP) signalling. METHODS: Young-adult (16 weeks) and aged (44 weeks) male wild-type (C57BL/6J) and GIP-receptor knockout (Gipr ( -/- )) mice were exposed to otherwise identical high-carbohydrate diets differing only in GI (20-26 weeks of intervention, n = 8-10 per group). Diet-induced changes in body fat distribution, liver fat, locomotor activity, markers of insulin sensitivity and substrate oxidation were investigated, as well as changes in the gene expression of anorexigenic and orexigenic hypothalamic factors related to food intake. RESULTS: Body weight significantly increased in young-adult high- vs low-GI fed mice (two-way ANOVA, p < 0.001), regardless of the Gipr genotype. The high-GI diet in young-adult mice also led to significantly increased fat mass and changes in metabolic markers that indicate reduced insulin sensitivity. Even though body fat mass also slightly increased in high- vs low-GI fed aged wild-type mice (p < 0.05), there were no significant changes in body weight and estimated insulin sensitivity in these animals. However, aged Gipr ( -/- ) vs wild-type mice on high-GI diet showed significantly lower cumulative net energy intake, increased locomotor activity and improved markers of insulin sensitivity. CONCLUSIONS/INTERPRETATION: The metabolic benefits of a low-GI diet appear to be more pronounced in younger animals, regardless of the Gipr genotype. Inactivation of GIP signalling in aged animals on a high-GI diet, however, could be beneficial.
Resumo:
OBJECTIVES: To determine whether the initial benefits of spinal cord stimulation (SCS) treatment for critical limb ischemia (CLI) persist over years. DESIGN: Analysis of data prospectively collected for every CLI patient receiving permanent SCS. Follow-up range 12 to 98 months (mean 46+/-23, median 50 months). POPULATION: 87 patients (28% stage III, 72%stage IV) with unreconstructable CLI due (83%) or not (17%) to atherosclerosis and with an initial sitting/supine transcutaneous pO2 gradient >15 mmHg. METHODS: Assessment of actuarial patient survival (PS), limb salvage (LS) and amputation-free patient survival (AFPS). Analysis of the impact of 15 risk factors on long-term outcomes using the Fischer's exact test for categorical variables and the t test for continuous variables. RESULTS: Follow-up was complete for patient and limb survival. A single non-atherosclerotic patient died during follow-up. Among atherosclerotic patients PS decreased from 88% at 1y, to 76% at 3y, 64% at 5y and 57% at 7y. LS reached 84% at 1y, 78% at 2y, 75% at 3y and remained stable thereafter. Diabetes was found to affect LS (p<0.05) and heart disease to reduce PS (p<0.01). AFPS was reduced in heart patients (p<0.01), diabetics (p<0.05) and in patients with previous stroke (p<0.05). CONCLUSIONS: In CLI patients the beneficial effects of SCS persist far beyond the first year of treatment and major amputation becomes infrequent after the second year.
Resumo:
Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid beta-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0. 06 mg g(-1) dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward beta-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via beta-oxidation and that a considerable flow toward beta-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.
Resumo:
North South Survey of Children’s Height, Weight and Body Mass Index, 2002. As part of a North South Survey of Childrenâ?Ts Oral Health conducted in Ireland in 2001/â?T02 [1], the heights and weights of a representative sample of children and adolescents age 4-16 years was measured. Data were collected by 34 teams of trained and calibrated dentists and dental nurses for 17,518 children aged 4-16 in the Republic of Ireland (RoI) and 2,099 in Northern Ireland (NI). Click here to download PDF 379kb
Resumo:
Background: Inadequate intraoperative cerebral perfusion and increased serum anticholinergic activity (SAA) have been suggested as possible causes of postoperative cognitive dysfunction (POCD). Methods: 53 patients aged >65 yrs undergoing elective major surgical procedures under standardized general anaesthesia. Cerebral perfusion was monitored with transcranial Doppler and near-infrared spectroscopy. Mx, an index of cerebral autoregulation was calculated based on the correlation of spontaneous changes inmean arterial blood pressure (MAP) and cerebral blood flow velocity. Cognitive function was measured preoperatively and 7 days postoperatively using the CERAD-Neuropsychological Battery. A postoperative decline >1 z-score in at least 2 cognitive variables was defined as POCD. SAA was measured preoperatively and 7 days postoperatively (data available for 38 patients). CRP was measured at the same time points and 2 days postoperatively. Results: Age was 75_7 yrs (mean_SD). 23 patients (43%) developed POCD. There were no statistical significant differences between patients with POCD and without POCD in age (77_7 vs 73_6 yrs), MAP (74_12 vs 78_11 mmHg), cerebral tissue oxygenation indices (67_6 vs 69_4 %) SAA preoperatively (1.74_1.52 vs 1.74_1.21) and 7 days postoperatively (1.90_1.63 vs 1.84_1.39) and CRP preoperatively (32_72 vs 7_9), 2 days postoperatively (176_129 vs 111_69) and 7days postoperatively (53_43 vs 48_25). Patients with POCD had less efficient autoregulation than patients without POCD (Mx 0.55_0.15 vs 0.45_0.20, p = 0.046). However, the percentage of patients with clearly impaired autoregulation (ie, Mx>0.5) was statistically not different between groups (with POCD: 65%; without POCD: 38%; p = 0.06) but there seems to be a trend. Conclusions: Our data on the association between cerebral perfusion and POCD in elderly patients are inconclusive and more patients need to be investigated. In this small group of patients SAA seems not to be associated with POCD.
Resumo:
Obese persons (those with a body mass index [BMI] ≥30 kg/m2) tend to underestimate their weight, leading to an underestimation of their true (measured) BMI and obesity prevalence.1,2 In contrast, underweight people (BMI <18.5 kg/m2) tend to report themselves heavier, resulting in a higher BMI compared with measured BMI and an underestimation of underweight prevalence.
Resumo:
The Pulmonary Embolism Severity Index (PESI) is a validated clinical prognostic model for patients with acute pulmonary embolism (PE). Our goal was to assess the PESI's inter-rater reliability in patients diagnosed with PE. We prospectively identified consecutive patients diagnosed with PE in the emergency department of a Swiss teaching hospital. For all patients, resident and attending physician raters independently collected the 11 PESI variables. The raters then calculated the PESI total point score and classified patients into one of five PESI risk classes (I-V) and as low (risk classes I/II) versus higher-risk (risk classes III-V). We examined the inter-rater reliability for each of the 11 PESI variables, the PESI total point score, assignment to each of the five PESI risk classes, and classification of patients as low versus higher-risk using kappa (κ) and intra-class correlation coefficients (ICC). Among 48 consecutive patients with an objective diagnosis of PE, reliability coefficients between resident and attending physician raters were > 0.60 for 10 of the 11 variables comprising the PESI. The inter-rater reliability for the PESI total point score (ICC: 0.89, 95% CI: 0.81-0.94), PESI risk class assignment (κ: 0.81, 95% CI: 0.66-0.94), and the classification of patients as low versus higher-risk (κ: 0.92, 95% CI: 0.72-0.98) was near perfect. Our results demonstrate the high reproducibility of the PESI, supporting the use of the PESI for risk stratification of patients with PE.
Resumo:
As part of a North South Survey of Childrens Oral Health conducted in Ireland in 2001/’02 [1], the heights and weights of a representative sample of children and adolescents age 4-16 years was measured. Data were collected by 34 teams of trained and calibrated dentists and dental nurses for 17,518 children aged 4-16 in the Republic of Ireland (RoI) and 2,099 in Northern Ireland (NI). This report presents the results of the study which provide a baseline measurement of Childrens height and weight against which future change can be measured. By comparing these data with international norms we can estimate the current prevalence of overweight and obesity among children and adolescents in Ireland.