944 resultados para measurement accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

State estimation is one of the most important functions in an energy control centre. An computationally efficient state estimator which is free from numerical instability/ill-conditioning is essential for security assessment of electric power grid. Whereas approaches to successfully overcome the numerical ill-conditioning issues have been proposed, an efficient algorithm for addressing the convergence issues in the presence of topological errors is yet to be evolved. Trust region (TR) methods have been successfully employed to overcome the divergence problem to certain extent. In this study, case studies are presented where the conventional algorithms including the existing TR methods would fail to converge. A linearised model-based TR method for successfully overcoming the convergence issues is proposed. On the computational front, unlike the existing TR methods for state estimation which employ quadratic models, the proposed linear model-based estimator is computationally efficient because the model minimiser can be computed in a single step. The model minimiser at each step is computed by minimising the linearised model in the presence of TR and measurement mismatch constraints. The infinity norm is used to define the geometry of the TR. Measurement mismatch constraints are employed to improve the accuracy. The proposed algorithm is compared with the quadratic model-based TR algorithm with case studies on the IEEE 30-bus system, 205-bus and 514-bus equivalent systems of part of Indian grid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanoindentation technique can be employed in shape memory alloys (SMAs) to discern the transformation temperatures as well as to characterize their mechanical behavior. In this paper, we use it with simultaneous measurements of the mechanical and the electrical contact resistances (ECR) at room temperature to probe two SMAs: austenite (RTA) and martensite (RTM). Two different types of indenter tips - Berkovich and spherical - are employed to examine the SMAs' indentation responses as a function of the representative strain, epsilon(R). In Berkovich indentation, because of the sharp nature of the tip, and in consequence the high levels of strain imposed, discerning the two SMAs on the basis of the indentation response alone is difficult. In the case of the spherical tip, epsilon(R) is systematically varied and its effect on the depth recovery ratio, eta(d), is examined. Results indicate that RTA has higher eta(d) than RTM, but the difference decreases with increasing epsilon(R) such that eta(d) values for both the alloys would be similar in the fully plastic regime. The experimental trends in eta(d) vs. epsilon(R) for both the alloys could be described well with a eta(d) proportional to (epsilon(R))(-1) type equation, which is developed on the basis of a phenomenological model. This fit, in turn, directs us to the maximum epsilon(R), below which plasticity underneath the indenter would not mask the differences in the two SMAs. It was demonstrated that the ECR measurements complement the mechanical measurements in demarcating the reverse transformation from martensite to austenite during unloading of RTA, wherein a marked increase in the voltage was noted. A correlation between recovery due to reverse transformation during unloading and increase in voltage (and hence the electrical resistance) was found. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SARAS is a correlation spectrometer purpose designed for precision measurements of the cosmic radio background and faint features in the sky spectrum at long wavelengths that arise from redshifted 21-cm from gas in the reionization epoch. SARAS operates in the octave band 87.5-175 MHz. We present herein the system design arguing for a complex correlation spectrometer concept. The SARAS design concept provides a differential measurement between the antenna temperature and that of an internal reference termination, with measurements in switched system states allowing for cancellation of additive contaminants from a large part of the signal flow path including the digital spectrometer. A switched noise injection scheme provides absolute spectral calibration. Additionally, we argue for an electrically small frequency-independent antenna over an absorber ground. Various critical design features that aid in avoidance of systematics and in providing calibration products for the parametrization of other unavoidable systematics are described and the rationale discussed. The signal flow and processing is analyzed and the response to noise temperatures of the antenna, reference termination and amplifiers is computed. Multi-path propagation arising from internal reflections are considered in the analysis, which includes a harmonic series of internal reflections. We opine that the SARAS design concept is advantageous for precision measurement of the absolute cosmic radio background spectrum; therefore, the design features and analysis methods presented here are expected to serve as a basis for implementations tailored to measurements of a multiplicity of features in the background sky at long wavelengths, which may arise from events in the dark ages and subsequent reionization era.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30 degrees apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a wireless receiver, a down-converted RF signal undergoes a transient phase shift, when the gain state is changed to adjust for varying conditions in transmission and propagation. A method is developed, in which such phase shifts are detected asynchronously, and their undesirable effects on the bit error rate are corrected. The method was developed for and used in, the system-level characterization and calibration of a 65-nm CMOS UHF receiver. The phase-shifts associated with specific gain-state transitions were measured within a test framework, and used in the baseband signal processing blocks to compensate for errors, whenever the receiver anticipated a gain-state transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, first a Fortran code is developed for three dimensional linear elastostatics using constant boundary elements; the code is based on a MATLAB code developed by the author earlier. Next, the code is parallelized using BLACS, MPI, and ScaLAPACK. Later, the parallelized code is used to demonstrate the usefulness of the Boundary Element Method (BEM) as applied to the realtime computational simulation of biological organs, while focusing on the speed and accuracy offered by BEM. A computer cluster is used in this part of the work. The commercial software package ANSYS is used to obtain the `exact' solution against which the solution from BEM is compared; analytical solutions, wherever available, are also used to establish the accuracy of BEM. A pig liver is the biological organ considered. Next, instead of the computer cluster, a Graphics Processing Unit (GPU) is used as the parallel hardware. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature. Also, a serial MATLAB code, and both serial and parallel versions of a Fortran code, which can solve three dimensional (3D) linear elastostatic problems using constant boundary elements, are provided as supplementary files that can be freely downloaded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of in-plane motion with high resolution and large bandwidth enables model-identification and real-time control of motion-stages. This paper presents an optical beam deflection based system for measurement of in-plane motion of both macro- and micro-scale motion stages. A curved reflector is integrated with the motion stage to achieve sensitivity to in-plane translational motion along two axes. Under optimal settings, the measurement system is shown to theoretically achieve sub-angstrom measurement resolution over a bandwidth in excess of 1 kHz and negligible cross-sensitivity to linear motion. Subsequently, the proposed technique is experimentally demonstrated by measuring the in-plane motion of a piezo flexure stage and a scanning probe microcantilever. For the former case, reflective spherical balls of different radii are employed to measure the in-plane motion and the measured sensitivities are shown to agree with theoretical values, on average, to within 8.3%. For the latter case, a prototype polydimethylsiloxane micro-reflector is integrated with the microcantilever. The measured in-plane motion of the microcantilever probe is used to identify nonlinearities and the transient dynamics of the piezo-stage upon which the probe is mounted. These are subsequently compensated by means of feedback control. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Practical phantoms are essential to assess the electrical impedance tomography (EIT) systems for their validation, calibration and comparison purposes. Metal surface electrodes are generally used in practical phantoms which reduce the SNR of the boundary data due to their design and development errors. Novel flexible and biocompatible gold electrode arrays of high geometric precision are proposed to improve the boundary data quality in EIT. The flexible gold electrode arrays are developed on flexible FR4 sheets using thin film technology and practical gold electrode phantoms are developed with different configurations. Injecting a constant current to the phantom boundary the surface potentials are measured by a LabVIEW based data acquisition system and the resistivity images are reconstructed in EIDORS. Boundary data profile and the resistivity images obtained from the gold electrode phantoms are compared with identical phantoms developed with stainless steel electrodes. Surface profilometry, microscopy and the impedance spectroscopy show that the gold electrode arrays are smooth, geometrically precised and less resistive. Results show that the boundary data accuracy and image quality are improved with gold electrode arrays. Results show that the diametric resistivity plot (DRP), contrast to noise ratio (CNR), percentage of contrast recovery (PCR) and coefficient of contrast (COC) of reconstructed images are improved in gold electrode phantoms. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an ab initio design and development of a novel Fiber Bragg Grating (FBG) sensor based strain sensing plate for the measurement of plantar strain distribution in human foot. The primary aim of this work is to study the feasibility of usage of FBG sensors in the measurement of plantar strain in the foot; in particular, to spatially resolve the strain distribution in the foot at different regions such as fore-foot, mid-foot and hind-foot. This study also provides a method to quantify and compare relative postural stability of different subjects under test; in addition, traditional accelerometers have been used to record the movements of center of gravity (second lumbar vertebra) of the subject and the results obtained have been compared against the outcome of the postural stability studies undertaken using the developed FBG plantar strain sensing plate. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated, with specific reference to the speed and the accuracy offered by BEM. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. A pig liver is the biological organ considered. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of optimal sequential (''as-you-go'') deployment of wireless relay nodes, as a person walks along a line of random length (with a known distribution). The objective is to create an impromptu multihop wireless network for connecting a packet source to be placed at the end of the line with a sink node located at the starting point, to operate in the light traffic regime. In walking from the sink towards the source, at every step, measurements yield the transmit powers required to establish links to one or more previously placed nodes. Based on these measurements, at every step, a decision is made to place a relay node, the overall system objective being to minimize a linear combination of the expected sum power (or the expected maximum power) required to deliver a packet from the source to the sink node and the expected number of relay nodes deployed. For each of these two objectives, two different relay selection strategies are considered: (i) each relay communicates with the sink via its immediate previous relay, (ii) the communication path can skip some of the deployed relays. With appropriate modeling assumptions, we formulate each of these problems as a Markov decision process (MDP). We provide the optimal policy structures for all these cases, and provide illustrations of the policies and their performance, via numerical results, for some typical parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scheme for built-in self-test of analog signals with minimal area overhead for measuring on-chip voltages in an all-digital manner is presented. The method is well suited for a distributed architecture, where the routing of analog signals over long paths is minimized. A clock is routed serially to the sampling heads placed at the nodes of analog test voltages. This sampling head present at each test node, which consists of a pair of delay cells and a pair of flip-flops, locally converts the test voltage to a skew between a pair of subsampled signals, thus giving rise to as many subsampled signal pairs as the number of nodes. To measure a certain analog voltage, the corresponding subsampled signal pair is fed to a delay measurement unit to measure the skew between this pair. The concept is validated by designing a test chip in a UMC 130-nm CMOS process. Sub-millivolt accuracy for static signals is demonstrated for a measurement time of a few seconds, and an effective number of bits of 5.29 is demonstrated for low-bandwidth signals in the absence of sample-and-hold circuitry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the current study is to evaluate the fidelity of load cell reading during impact testing in a drop-weight impactor using lumped parameter modeling. For the most common configuration of a moving impactor-load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. A 3-DOF (degrees-of-freedom) LPM (lumped parameter model) is considered to represent a given impact testing set-up. In this model, a test specimen in the form of a steel hat section similar to front rails of cars is represented by a nonlinear spring while the load cell is assumed to behave in a linear manner due to its high stiffness. Assuming a given load-displacement response obtained in an actual test as the true behavior of the specimen, the numerical solution of the governing differential equations following an implicit time integration scheme is shown to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the load cell, however,predicts a response that qualitatively matches the assumed load-displacement response of the test specimen with a perceptibly lower magnitude of load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic objective in the present study is to show that for the most common configuration of an impactor system, an accelerometer cannot exactly reproduce the dynamic response of a specimen subject to impact loading. Assessment of the accelerometer mounted in a drop-weight impactor setup for an axially loaded specimen is done with the aid of an equivalent lumped parameter model (LPM) of the setup. A steel hat-type specimen under the impact loading is represented as a non-linear spring of varying stiffness, while the accelerometer is assumed to behave in a linear manner due to its high stiffness. A suitable numerical approach has been used to solve the non-linear governing equations for a 3 degrees-of-freedom system in a piece-wise linear manner. The numerical solution following an explicit time integration scheme is used to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the accelerometer, however, predicts a response that qualitatively matches the assumed load–displacement response of the test specimen with a perceptibly lower magnitude of load.