974 resultados para mathematical content
Resumo:
Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.
Resumo:
Hydrophobic chemicals are known to associate with sediment particles including those from both suspended particulate matter and bottom deposits. The complex and variable composition of natural particles makes it very difficult therefore, to predict the bioavailability of sediment-bound contaminants. To overcome these problems we have previously devised a test system using artificial particles, with or without humic acids, for use as an experimental model of natural sediments. In the present work we have applied this experimental technique to investigate the bioavailability and bioaccumulation of pyrene by the freshwater fingernail clam Sphaerium corneum. The uptake and accumulation of pyrene in clams exposed to the chemical in the presence of a sample of natural sediment was also investigated. According to the results obtained, particle surface properties and organic matter content are the key factors for assessing the bioavailability and bioaccumulation of pyrene by clams. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Pea (Pisum sativum L.) mutant near-isogenic lines (RRrbrb, rrRbRb, rrrbrb) with lower starch but higher lipid contents, brought about by lesions in the starch biosynthetic pathway, had seed moisture sorption isotherms displaced below that of the wild type (RRRbRb). The negative logarithmic relationship between seed longevity and seed storage moisture content (%, f.wt basis), determined in hermetic storage at 65 °C, also differed: longevity in the mutant near-isogenic lines was poorer and less sensitive to moisture content than in the wild type (i.e. CW was lower). The low-moisture-content limit (mc) to this relation also differed, being lower in the mutant near-isogenic lines (5.4–5.9%) than in the wild type (6.1%). In contrast, all four near-isogenic lines showed no difference (P >0.25) in the negative semi-logarithmic relationship between equilibrium relative humidity (ERH) and seed longevity. It is concluded that the effect of these alleles at the r and rb loci on seed longevity was largely indirect; a consequence of their effect on seed composition and hence on moisture sorption isotherms. However, this explanation could not be invoked at moisture contents below mc where differences in longevity remained substantial (RRRbRb double that of rrrbrb). Hence, these mutant alleles affected seed longevity directly at very low moisture contents.
Resumo:
This is the first of two articles presenting a detailed review of the historical evolution of mathematical models applied in the development of building technology, including conventional buildings and intelligent buildings. After presenting the technical differences between conventional and intelligent buildings, this article reviews the existing mathematical models, the abstract levels of these models, and their links to the literature for intelligent buildings. The advantages and limitations of the applied mathematical models are identified and the models are classified in terms of their application range and goal. We then describe how the early mathematical models, mainly physical models applied to conventional buildings, have faced new challenges for the design and management of intelligent buildings and led to the use of models which offer more flexibility to better cope with various uncertainties. In contrast with the early modelling techniques, model approaches adopted in neural networks, expert systems, fuzzy logic and genetic models provide a promising method to accommodate these complications as intelligent buildings now need integrated technologies which involve solving complex, multi-objective and integrated decision problems.
Resumo:
This article is the second part of a review of the historical evolution of mathematical models applied in the development of building technology. The first part described the current state of the art and contrasted various models with regard to the applications to conventional buildings and intelligent buildings. It concluded that mathematical techniques adopted in neural networks, expert systems, fuzzy logic and genetic models, that can be used to address model uncertainty, are well suited for modelling intelligent buildings. Despite the progress, the possible future development of intelligent buildings based on the current trends implies some potential limitations of these models. This paper attempts to uncover the fundamental limitations inherent in these models and provides some insights into future modelling directions, with special focus on the techniques of semiotics and chaos. Finally, by demonstrating an example of an intelligent building system with the mathematical models that have been developed for such a system, this review addresses the influences of mathematical models as a potential aid in developing intelligent buildings and perhaps even more advanced buildings for the future.
Resumo:
Individuals with elevated levels of plasma low density lipoprotein (LDL) cholesterol (LDL-C) are considered to be at risk of developing coronary heart disease. LDL particles are removed from the blood by a process known as receptor-mediated endocytosis, which occurs mainly in the liver. A series of classical experiments delineated the major steps in the endocytotic process; apolipoprotein B-100 present on LDL particles binds to a specific receptor (LDL receptor, LDL-R) in specialized areas of the cell surface called clathrin-coated pits. The pit comprising the LDL-LDL-R complex is internalized forming a cytoplasmic endosome. Fusion of the endosome with a lysosome leads to degradation of the LDL into its constituent parts (that is, cholesterol, fatty acids, and amino acids), which are released for reuse by the cell, or are excreted. In this paper, we formulate a mathematical model of LDL endocytosis, consisting of a system of ordinary differential equations. We validate our model against existing in vitro experimental data, and we use it to explore differences in system behavior when a single bolus of extracellular LDL is supplied to cells, compared to when a continuous supply of LDL particles is available. Whereas the former situation is common to in vitro experimental systems, the latter better reflects the in vivo situation. We use asymptotic analysis and numerical simulations to study the longtime behavior of model solutions. The implications of model-derived insights for experimental design are discussed.
Resumo:
Chestnuts are an important economic resource in the chestnut growing regions, not only for the fruit, but also for the wood. The content of ellagic acid (EA), a naturally occurring inhibitor of carcinogenesis, was determined in chestnut fruits and bark. EA was extracted with methanol and free ellagic acid was determined by HPLC with UV detection, both in the crude extract and after hydrolysis. The concentration of EA was generally increased after hydrolysis due to the presence of ellagitannins in the crude extract. The concentration varied between 0.71 and 21.6 ing g(-1) (d.w.) in un-hydrolyzed samples, and between 2.83 and 18.4 mg g(-1) (d.w.) ill hydrolyzed samples. In chestnut fruits, traces of EA were present in the seed, with higher concentrations in the pellicle and pericarp. However, all fruit tissues had lower concentrations of EA than had the bark. The concentration of EA in the hydrolyzed samples showed a non-linear correlation with the concentration in the unhydrolyzed extracts. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this review paper is to present experimental methodologies and the mathematical approaches used to determine effective diffusivities of solutes in food materials. The paper commences by describing the diffusion phenomena related to solute mass transfer in foods and effective diffusivities. It then focuses on the mathematical formulation for the calculation of effective diffusivities considering different diffusion models based on Fick's second law of diffusion. Finally, experimental considerations for effective diffusivity determination are elucidated primarily based on the acquirement of a series of solute content versus time curves appropriate to the equation model chosen. Different factors contributing to the determination of the effective diffusivities such as the structure of food material, temperature, diffusion solvent, agitation, sampling, concentration and different techniques used are considered. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Mechanisms underlying milk fat conjugated linoleic acid (CLA) responses to supplements of fish oil were investigated using five lactating cows each fitted with a rumen cannula in a simple experiment consisting of two consecutive 14-day experimental periods. During the first period cows were offered 18 kg dry matter (DM) per day of a basal (B) diet formulated from grass silage and a cereal based-concentrate (0.6 : 0.4; forage : concentrate ratio, on a DM basis) followed by the same diet supplemented with 250 g fish oil per day (FO) in the second period. The flow of non-esterified fatty acids leaving the rumen was measured using the omasal sampling technique in combination with a triple indigestible marker method based on Li-Co-EDTA, Yb-acetate and Cr-mordanted straw. Fish oil decreased DM intake and milk yield, but had no effect on milk constituent content. Milk fat trans-11C(18:1), total trans-C-18:1, cis-9 trans-11 CLA, total CLA, C-18 :2 (n- 6) and total C-18:2 content were increased in response to fish oil from 1.80, 4.51, 0.39, 0. 56, 0.90 and 1.41 to 9.39, 14.39, 1.66, 1.85, 1.25 and 4.00 g/100 g total fatty acids, respectively. Increases in the cis-9, trans-11 isomer accounted for proportionately 0.89 of the CLA response to fish oil. Furthermore, fish oil decreased the flow of C-18:0 (283 and 47 g/day for B and FO, respectively) and increased that of trans-C-18:1 fatty acids entering the omasal canal (38 and 182 g/day). Omasal flows of trans-C-18:1 acids with double bonds in positions from delta-4 to -15 inclusive were enhanced, but the effects were isomer dependent and primarily associated with an increase in trans-11C(18:1) leaving the rumen (17.1 and 121.1 g/day for B and FO, respectively). Fish oil had no effect on total (4.36 and 3.50 g/day) or cis-9, trans-11 CLA (2.86 and 2.08 g/day) entering the omasal canal. Flows of cis-9, trans-11 CLA were lower than the secretion of this isomer in milk. Comparison with the transfer of the trans-9, trans-11 isomer synthesized in the rumen suggested that proportionately 0.66 and 0.97 of cis-9, trans-11 CLA was derived from endogenous conversion of trans-11 C-18:1 in the mammary gland for B and FO, respectively. It is concluded that fish oil enhances milk fat cis-9, trans-11 CLA content in response to increased supply of trans-11 C-18:1 that arises from an inhibition of trans C-18:1 reduction in the rumen.
Resumo:
The aim of this study was to evaluate the survivability of Bifidobacterium breve NCIMB 702257 in a three malt-based media supplemented with cysteine and yeast extract, and to determine the protective effect of these growth factors. A number of parameterised mathematical models were used to predict of kinetics of viability and total acidity during storage at different temperatures. Results demonstrated a good fit to the experimental mathematical model. The Arrhenius equations showed only reasonable fits and the polynomial plots contained a large area without data between 4 and 25 degrees C. In addition, it was shown that cysteine promotes growth and acid production by bifidobacteria, but does not extend survivability. On the other hand, increasing the yeast extract content of the fermentation media enhances the survivability of B. breve. To our knowledge, this is the first study to address the modelling of the survivability of probiotic bacteria in a cereal based fermentation media at different temperatures, introducing a more quantitative approach to the study of the shelf-life of a probiotic product. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Proteolysis of Serpa cheese produced traditionally (B) and semi-industrially (C) was evaluated for the first time by determination of nitrogen content and capillary zone electrophoresis (CZE). A citrate dispersion of cheese was fractionated to determine the nitrogen in pH 4.4, trichloroacetic and phosphotungstic acid soluble fractions (pH 4.4-SN, TCA-SN and PTA-SN, respectively). The pH 4.4-SN was significantly higher for B ( P < 0.001), while TCA-SN was significantly higher for C ( P < 0.001). PTA-SN was also higher for C but at 60 days ripening no significant difference was found between B and C. Degradation of alpha(s1) - and beta-caseins evaluated by CZE was in good agreement with the maturation index (pH 4.4-SN/TN).
Resumo:
Forty multiparous Holstein cows were used in a 16-week continuous design study to determine the effects of either selenium (Se) source, selenised yeast (SY) (derived from a specific strain of Saccharomyces cerevisiae CNCM 1-3060) or sodium selenite (SS), or Se inclusion rate in the form of SY in the diets of lactating dairy cows on the Se concentration and speciation in blood, milk and cheese. Cows received ad libitum a total mixed ration (TMR) with a 1 : 1 forage: concentrate ratio on a dry matter (DM) basis. There were four diets (T-1 to T-4), which differed only in either source or dose of Se additive. Estimated total dietary Se for T, (no supplement), T-2 (SS), T-3 (SY) and T-4 (SY) was 0.16, 0.30, 0.30 and 0.45 mg/kg DM, respectively. Blood and milk samples were taken at 28-day intervals and at each time point there were positive linear effects of Se in the form of SY on the Se concentration in blood and milk. At day 112 blood and milk Se values for T-1 to T-4 were 177, 208, 248 and 279 +/- 6.6 and 24, 38, 57 and 72 +/- 3.7 ng/g fresh material, respectively, and indicate improved uptake and incorporation of Se from SY. In whole blood, selenocysteine (SeCys) was the main selenised amino acid and the concentration of selenomethionine (SeMet) increased with the increasing inclusion rate of SY In milk, there were no marked treatment effects on the SeCys content, but Se source had a marked effect on the concentration of SeMet. At day 112 replacing SS (T-2) with SY (T-3) increased the SeMet concentration of milk from 36 to 111 ng Se/g and its concentration increased further to 157ng Se/g dried sample as the inclusion rate of SY increased further (T-4) to provide 0.45 mg Se/kg TMR. Neither Se source nor inclusion rate affected the keeping quality of milk. At day 112 milk from T-1, T-2 and T-3 was made into a hard cheese and Se source had a marked effect on total Se and the concentration of total Se comprised as either SeMet or SeCys. Replacing SS (T-2) with SY (T-3) increased total Se, SeMet and SeCys content in cheese from 180 to 340 ng Se/g, 57 to 153 ng Se/g and 52 to 92 ng Se/g dried sample, respectively. The use of SY to produce food products with enhanced Se content as a means of meeting the Se requirements is discussed
Resumo:
A new primary model based on a thermodynamically consistent first-order kinetic approach was constructed to describe non-log-linear inactivation kinetics of pressure-treated bacteria. The model assumes a first-order process in which the specific inactivation rate changes inversely with the square root of time. The model gave reasonable fits to experimental data over six to seven orders of magnitude. It was also tested on 138 published data sets and provided good fits in about 70% of cases in which the shape of the curve followed the typical convex upward form. In the remainder of published examples, curves contained additional shoulder regions or extended tail regions. Curves with shoulders could be accommodated by including an additional time delay parameter and curves with tails shoulders could be accommodated by omitting points in the tail beyond the point at which survival levels remained more or less constant. The model parameters varied regularly with pressure, which may reflect a genuine mechanistic basis for the model. This property also allowed the calculation of (a) parameters analogous to the decimal reduction time D and z, the temperature increase needed to change the D value by a factor of 10, in thermal processing, and hence the processing conditions needed to attain a desired level of inactivation; and (b) the apparent thermodynamic volumes of activation associated with the lethal events. The hypothesis that inactivation rates changed as a function of the square root of time would be consistent with a diffusion-limited process.
Resumo:
BACKGROUND: Since the discovery in 2002 of acrylamide in a wide range of foods, there has been much work done to explore mechanisms of formation and to reduce acrylamide in commercial products. This study aimed to investigate simple measures which could be used to reduce acrylamide formation in home-cooked French fries, using potatoes from three cultivars stored under controlled conditions and sampled at three time points. RESULTS: The reducing sugar content for all three cultivars increased during storage, which led to increased acrylamide levels in the French fries. Washing and soaking (30 min or 2 h) raw French fries before cooking led to reductions in acrylamide of up to 23, 38 and 48% respectively. Pre-treated fries were lighter in colour after cooking than the corresponding controls. CONCLUSION: Pre-treatments such as soaking or washing raw French fries in water reduce acrylamide and colour formation in the final product when cooking is stopped at a texture-determined endpoint. (c) 2008 Society of Chemical Industry.
Resumo:
The mathematical models that describe the immersion-frying period and the post-frying cooling period of an infinite slab or an infinite cylinder were solved and tested. Results were successfully compared with those found in the literature or obtained experimentally, and were discussed in terms of the hypotheses and simplifications made. The models were used as the basis of a sensitivity analysis. Simulations showed that a decrease in slab thickness and core heat capacity resulted in faster crust development. On the other hand, an increase in oil temperature and boiling heat transfer coefficient between the oil and the surface of the food accelerated crust formation. The model for oil absorption during cooling was analysed using the tested post-frying cooling equation to determine the moment in which a positive pressure driving force, allowing oil suction within the pore, originated. It was found that as crust layer thickness, pore radius and ambient temperature decreased so did the time needed to start the absorption. On the other hand, as the effective convective heat transfer coefficient between the air and the surface of the slab increased the required cooling time decreased. In addition, it was found that the time needed to allow oil absorption during cooling was extremely sensitive to pore radius, indicating the importance of an accurate pore size determination in future studies.