951 resultados para mammalian reservoirs
Resumo:
Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher`s disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59-66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.
Resumo:
LipL32 is the major leptospiral outer membrane lipoprotein expressed during infection and is the immunodominant antigen recognized during the humoral immune response to leptospirosis in humans. In this study, we investigated novel aspects of LipL32. In order to define the immunodominant domains(s) of the molecule, subfragments corresponding to the N-terminal, intermediate, and C-terminal portions of the UpL32 gene were cloned and the proteins were expressed and purified by metal affinity chromatography. Our immunoblot results indicate that the C-terminal and intermediate domains of LipL32 are recognized by sera of patients with laboratory-confirmed leptospirosis. An immunoglobulin M response was detected exclusively against the LipL32 C-terminal fragment in both the acute and convalescent phases of illness. We also evaluated the capacity of LipL32 to interact with extracellular matrix (ECM) components. Dose-dependent, specific binding of LipL32 to collagen type IV and plasma fibronectin was observed, and the binding capacity could be attributed to the C-terminal portion of this molecule. Both heparin and gelatin could inhibit LipL32 binding to fibronectin in a concentration-dependent manner, indicating that the 30-kDa heparin-binding and 45-kDa gelatin-binding domains of fibronectin are involved in this interaction. Taken together, our results provide evidence that the LipL32 C terminus is recognized early in the course of infection and is the domain responsible for mediating interaction with ECM proteins.
Resumo:
Rabies virus is a pathogen of major concern in free-ranging wild carnivores in several regions of the world, but little is known about its circulation in Brazilian wild carnivores. Sera from 211 free-ranging wild carnivores, captured from 2000 to 2006 in four locations of two Brazilian biomes (Pantanal and Cerrado), were tested for rabies antibodies. Twenty-six individuals (12.3%) had neutralizing antibody titers >= 0.10 IU/ml. The four sampled locations had antibody-positive animals, suggesting that Rabies virus circulates in all of these regions. Results underscore the risk posed by rabies for conservation of Brazilian carnivores and the possibility of the animals acting as reservoirs for the Rabies virus.
Resumo:
Insectivorous bats are the main reservoirs of rabies virus (RABV) in various regions of the world. The aims of this study were to (a) establish genealogies for RABV strains from different species of Brazilian insectivorous bats based on the nucleoprotein (N) and glycoprotein (G) genes, (b) investigate specific RABV lineages associated with certain genera of bats and (c) identify molecular markers that can distinguish between these lineages. The genealogic analysis of N and G from 57 RABV strains revealed seven genus-specific clusters related to the insectivorous bats Myotis, Eptesicus, Nyctinomops, Molossus, Tadarida, Histiotus and Lasiurus. Molecular markers in the amino acid sequences were identified which were specific to the seven clusters. These results, which constitute a novel finding for this pathogen, show that there are at least seven independent epidemiological rabies cycles maintained by seven genera of insectivorous bats in Brazil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Sperm-mediated gene transfer (SMGT) is a fast and low-cost method used to produce transgenic animals. The objective of this study was to evaluate the effects of the concentration of exogenous DNA and the duration of incubation on DNA uptake by bovine spermatozoa and subsequently the integrity of sperm DNA and sperm apoptosis. Spermatozoa (5 X 10(6) cells/mL) were incubated with 100, 300, or 500 ng of exogenous DNA (pEYFP-Nuc plasmid) for 60 or 120 min at 39 degrees C. The amount of exogenous DNA associated with spermatozoa was quantified by real-time PCR, and the percentages of DNA fragmentation in spermatozoa were evaluated using SCSA and a TUNEL assay, coupled with flow cytometry. Uptake of exogenous DNA increased significantly as incubation increased from 60 to 120 min (0.0091 and 0.028 ng, respectively), but only when the highest exogenous DNA concentration (500 ng) was used (P < 0.05). Based on SCSA and TUNEL assays, there was no effect of exogenous DNA uptake or incubation period on sperm DNA integrity. In conclusion, exogenous DNA uptake by bovine spermatozoa was increased with the highest exogenous DNA concentration and longest incubation period, but fragmentation of endogenous DNA was apparently not induced. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Nuclear transfer of domestic cat can be used as a tool to develop reproductive biotechnologies in wild felids. The importance of cell cycle phase during the nuclear transfer has been a matter of debate since the first mammalian clone was produced. The cell cycle phase of donor cells interferes on maintenance of correct ploidy and genetic reprogramming of the reconstructed embryo. The use of G0/G1 arrested donor cells has been shown to improve nuclear transfer efficiency. The present study was conducted to test the hypothesis that domestic cat foetal fibroblasts cultured up to the fifth passage and submitted to full confluency provide a higher percentage of cells at G0/G1 stage than fibroblasts cultured in serum starved media. Results demonstrated that serum starvation increased (p < 0.05) the percentage of G0/G1 fibroblasts when compared with control. Moreover, the combined protocol using confluency and serum starvation was more efficient (p < 0.05) synchronizing cells at G0/G1 stage than serum starvation or confluency alone for the first 3 days of treatment. In conclusion, serum starvation and full confluency act in a synergistic manner to improve domestic cat foetal fibroblast cell cycle synchronization at the G0/G1 stage.
Resumo:
Contents The current study examined the protective effects of l-glutamine and cytochalasin B during vitrification of immature bovine oocytes. Oocyte vitrification solution (PBS supplemented with 10% FCS, 25% EG, 25% DMSO and 0.5 m trehalose) was the vitrification control. Treatments were the addition of 7 mu g/ml cytochalasin B, 80 mm glutamine or both cytochalasin and glutaminine for 30 s. After warming, oocytes were matured in vitro for 24 h, fixed and stained with Hoechst (33342) for nuclear maturation evaluation. l-glutamine improved the vitrified/warmed immature bovine oocytes viability (32.8%), increasing the nuclear maturation rates compared to other treatments and the no treatment vitrified control (17.4%). There was, however, no effect of cytochalasin B on in vitro maturation (14.4%).
Resumo:
The aim of this study was to assess the effect of exogenous DNA and incubation time on the viability of bovine sperm. Sperm were incubated at a concentration of 5 x 10(6)/ml with or without plasmid pEYFP-NUC. Fluorescent probes, propidium iodide/Hoechst 33342, FITC-PSA and JC-1, were used to assess plasma membrane integrity (PMI), acrosome membrane integrity (AMI) and mitochondrial membrane potential (MMP) respectively at 0, 1, 2, 3 and 4 h of incubation. Exogenous DNA addition did not affect sperm viability; however, incubation time was related to sperm deterioration. Simultaneous assessment of PMI, AMI and MMP showed a reduction in the number of sperm with higher viability (integrity of plasma and acrosome membranes and high mitochondrial membrane potential) from 58.7% at 0 h to 7.5% after 4 h of incubation. Lower viability sperm (damaged plasma and acrosome membranes and low mitochondrial membrane potential) increased from 4.6% at 0 h to 25.99% after 4 h of incubation. When PMI, AMI and MMP were assessed separately we noticed a reduction in plasma and acrosome membrane integrity and mitochondrial membrane potential throughout the incubation period. Therefore, exogenous DNA addition does not affect sperm viability, but the viability is reduced by incubation time.
Resumo:
The nerve terminals of intrinsic muscular fibers of the tongue of adult wistar rats was studied by using silver impregnation techniques, transmission electron microscopy (TEM), and high resolution scanning electron microscopy (HRSEM) to observe the nerve fibers and their terminals. Silver impregnation was done according to Winkelman and Schmit, 1957. For TEM, small blocks were fixed in modified Karnovsky solution, postfixed in 1% buffered osmium tetroxide solution, and embedded in Spurr resin. For HRSEM, the parts were fixed in 2% osmium tetroxide solution with 1/15 M sodium phosphate buffer (pH 7.4) at 4 degrees C for 2 h, according to the technique described by Tanaka, 1989. Thick myelinated nerve bundles were histologically observed among the muscular fibers. The intrafusal nerve fiber presented a tortuous pathway with punctiform terminal axons in clusters contacting the surface of sarcolemma. Several myelinated nerve fibers involved by collagen fibers of the endoneurium were observed in HRSEM in three-dimensional aspects. The concentric lamellae of the myelin sheath and the axoplasm containing neurofilaments interspersed among the mitochondria were also noted. In TEM, myofibrils, mitochondria, rough endoplasmic reticulum, Golgi`s apparatus, and glycogen granules were observed in sarcoplasm. It is also noted that the sarcomeres constituted by myofilaments with their A, I, and H bands and the electron dense Z lines. In areas adjacent to muscular fibers, there were myelinated and unmyelinated nerve fibers involved by endoneurium and perineurium. In the region of the neuromuscular junction, the contact with the sarcolemma of the muscular cell occurs forming several terminal buttons and showing numerous evaginations of the cell membrane. In the terminal button, mitochondria and numerous synaptic vesicles were observed. Microsc. Res. Tech. 72:464-470, 2009. (C) 2009 Wiley-Liss. Inc.
Resumo:
Changes in gene expression have been measured 24 h after injury to mammalian spinal cords that can and cannot regenerate In opossums there is a critical period of development when regeneration stops being possible at 9 days postnatal cervical spinal cords regenerate, at 12 days they do not By the use of marsupial cDNA microarrays we detected 158 genes that respond differentially to injury at the two ages critical for regeneration For selected candidates additional measurements were made by real time PCR and sites of their expression were shown by immunostaining Candidate genes have been classified so as to select those that promote or prevent regeneration Up regulated by injury at 8 days and/or down regulated by injury at 13 days were genes known to promote growth, such as Mitogen activated protein kinase kinase 1 or transcripton factor TCF7L2 By contrast, at 13 days up regulation occurred of Inhibitory molecules including annexins ephrins and genes related to apoptosis and neurodegeneranve diseases Certain genes such as calmodulin 1 and NOGO changed expression similarly in animals that could and could not regenerate without any additional changes in response to injury These findings confirmed and extended changes of gene expression found in earlier screens on 9 and 12 day preparations without lesions and provide a comprehensive list of genes that serve as a basis for testing how identified molecules singly or in combination, promote and prevent central nervous system regeneration (C) 2010 Elsevier B V All rights reserved
Resumo:
Monoamines (noradrenaline (NA), adrenaline (AD), dopamine (DA) and serotonin (5-HT) are key neurotransmitters that are implicated in multiple physiological and pathological brain mechanisms, including control of respiration. The monoaminergic system is known to be widely distributed in the animal kingdom, which indicates a considerable degree of phylogenetic conservation of this system amongst vertebrates. Substantial progress has been made in uncovering the participation of the brain monoamines in the breathing regulation of mammals, since they are involved in the maturation of the respiratory network as well as in the modulation of its intrinsic and synaptic properties. On the other hand, for the non-mammalian vertebrates, most of the knowledge of central monoaminergic modulation in respiratory control, which is actually very little, has emerged from studies using anuran amphibians. This article reviews the available data on the role of brain monoaminergic systems in the control of ventilation in terrestrial vertebrates. Emphasis is given to the comparative aspects of the brain noradrenergic, adrenergic, dopaminergic and serotonergic neuronal groups in breathing regulation, after first briefly considering the distribution of monoaminergic neurons in the vertebrate brain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The cDNA sequence for insulin-like growth factor 2 (IGF-2) was determined from the liver of the marsupial brushtail possum (Trichosurus vulpecula) using reverse transcription followed by polymerase chain reaction (RT-PCR) with gene-specific primers. The 359 bp of possum sequence encompassed the mature peptide, 27 bp of the signal peptide, and 125 bp of the E-peptide. Alignment of the deduced amino acid sequence with those from other species indicated that the mature peptide was 71 amino acids in length, 4 amino acids longer than most other mammals. At both the nucleotide and amino acid levels there was a high degree of sequence identity with IGF-2 from other mammalian and nonmammalian species. Amino acid identity ranged from 94.4% with a variant form of human IGF-2 to 80.3% with zebrafinch IGF-2. Northern analysis revealed that radiolabeled possum IGF-2, cDNA hybridized to multiple transcripts in the liver of both adult possums and 150-day-old pouch young and that the overall level of expression was greater in pouch young. Semiquantitative RT-PCR with total RNA from liver samples of pouch young aged 12 to 150 days postpartum and adults confirmed that IGF-2 gene expression was two to three times more abundant in pouch young than in adults but there was no significant change in the level of expression during pouch life. Unlike other mammalian species, in which there is a decline in levels of liver IGF-2 gene expression around the time of birth, levels in the marsupial brushtail possum remain elevated for at least 150 days after birth. This suggests that the decline in liver IGF-2 expression in marsupials and eutherians occurs at a similar stage of development and may reflect a role for this growth factor during the postnatal growth and development of the marsupial, (C) 2001 Academic Press.
Resumo:
This review provides an overview of the distributions, properties and roles of amino acid transport systems in normal and pathological retinal tissues and discusses the roles of specific identified transporters in the mammalian retina. The retina is used in this context as a vehicle for describing neuronal and glial properties. which are in semi, but not all cases comparable to those found elsewhere an the brain. Where significant departures are noted, these are discussed in the context of functional specialisations of the retina and its relationship to adjacent supporting tissues such as the retinal pigment epithelium. Specific examples are given where immunocytochemical labelling for amino acid transporters may yield inaccurate results, possibly because of activity-dependent conformation changes of epitopes in these proteins which render the epitopes more or less accessible to antibodies. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We wished to identify the different types of retinal neurons on the basis of their content of neuroactive substances in both larval tiger salamander and mudpuppy retinas, favored species for electrophysiological investigation. Sections and wholemounts of retinas were labeled by immunocytochemical methods to demonstrate three calcium binding protein species and the common neurotransmitters, glycine, GABA and acetylcholine. Double immunostained sections and single labeled wholemount retinas were examined by confocal microscopy. Immunostaining patterns appeared to be the same in salamander and mudpuppy. Double and single cones, horizontal cells, some amacrine cells and ganglion cells were strongly calbindin-immunoreactive (IR). Calbindin-IR horizontal cells colocalized GABA. Many bipolar cells, horizontal cells, some amacrine cells and ganglion cells were strongly calretinin-IR. One type of horizontal cell and an infrequently occurring amacrine cell were parvalbumin-IR. Acetylcholine as visualized by ChAT-immunoreactivity was seen in a mirror-symmetric pair of amacrine cells that colocalized GABA and glycine. Glycine and GABA colocalized with calretinin, calbindin and occasionally with parvalbumin in amacrine cells. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Experimental protocols that allow confident assignment of signaling proteins to specific subdomains of the plasma membrane are essential for a full understanding of the complexities of signal transduction. This is especially relevant for Ras proteins, where the different membrane anchors of the Ras isoforms target them to functionally distinct microdomains that in turn allow quantitatively different signal outputs from otherwise highly homologous proteins. The methods outlined in this chapter, in addition to being invaluable in addressing Ras function, should also have wide utility in the study of many mammalian signal transduction pathways.