967 resultados para magnetic nanoparticles
Resumo:
We explore the consequences of the model of spin-down-induced flux expulsion for the magnetic field evolution in solitary as well as in binary neutron stars. The spin evolution of pulsars, allowing for their field evolution according to this model, is shown to be consistent with the existing observational constraints in both low- and high-mass X-ray binary systems. The contribution from pulsars recycled in massive binaries to the observed excess in the number of low-field (10(11)-10(12) G) solitary pulsars is argued to be negligible in comparison with that of normal pulsars undergoing a 'restricted' field decay predicted by the adopted field decay model. Magnetic fields of neutron stars born in close binaries with intermediate- or high-mass main-sequence companions are predicted to decay down to values as low as similar to 10(6) G, which would leave them unobservable as pulsars during most of their lifetimes. The post-recycling evolution of some of these systems can, however, account for the observed binary pulsars having neutron star or massive white dwarf companions. Pulsars recycled in the disc population low-mass binaries are expected to have residual fields greater than or similar to 10(8) G, while for those processed in globular clusters larger residual fields are predicted because of the lower field strength of the neutron star at the epoch of binary formation. A value of tau similar to 1-2 x 10(7) yr for the mean value of the Ohmic decay time-scale in the crusts of neutron stars is suggested, based on the consistency of the model predictions with the observed distribution of periods and magnetic fields in the single and binary pulsars.
Resumo:
Rare-earth nickelates Ln(2)BaNi(1-x)Cu(2)O(5), Ln = Nd and Dy, and Dy2-xYxBaNiO5 have been synthesized in order to investigate the effect of substitution of Ni by Cu and Dy by nonmagnetic Y on the magnetic properties of the nickelates. In Ln(2)BaNi(1-x)Cu(x)O(5), the nickelate structure (x=0.0) changes to the cuprate structure (x=1.0) at a specific composition (x=0.3). The Neel temperature of Nd2BaNi1-xCuxO5 decreases continuously with increase in x upto x=0.3 (T-N = 18K); when x > 0.3, the materials are paramagnetic down to 20K. The mu(eff) in Nd2BaNi1-xCxO5 essentially corresponds to the contribution of the Nd ions. In Dy2-xYxBaNiO5, the Neel temperature decreases from 40K when x=0.0 to 24K when x=1.5. The compositions with 1.5 less than or equal to x less than or equal to 2 (including the x=1.95 composition) are paramagnetic down to 20K, unlike Y2BaNiO5 (x=2.0) which exhibits a T-N of 370K. Even the smallest concentration of paramagnetic Dy seems to destroy the antiferromagnetic Ni-O-Ni chains in Y2BaNiO5.
Resumo:
We study Raman scattering from 1D antiferromagnets within the Fleury-Loudon scheme by applying a finite temperature Lanczos method to a 1D spin-half Heisenberg model with nearest-neighbor (J(1)) and second-neighbor (J(2)) interactions. The low-temperature spectra are analyzed in terms of the known elementary excitations of the system for J(2) = 0 and J(2) = 1/2. We find that the low-T Raman spectra are very broad for \J(2)/J(1)\ less than or equal to 0.3. This broad peak gradually diminishes and shifts with temperature, so that at T > J(1) the spectra are narrower and peaked at low frequencies. The experimental spectra for CuGeO3 are discussed in light of our calculations.
Resumo:
We are reporting a novel green approach to incorporate silver nanoparticles (NPs) selectively in the polyelectrolyte capsule shell for remote opening of polyelectrolyte capsules. This approach involves in situ reduction of silver nitrate to silver NPs using PEG as a reducing agent (polyol reduction method). These nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by the synthesis of silver NPs and subsequently the dissolution of the silica core. The size of silver nanoparticles synthesized was 60 +/- 20 nm which increased to 100 +/- 20 nm when the concentration of AgNO3 increased from 25 mM to 50 mM. The incorporated silver NPs induced rupture and deformation of the capsules under laser irradiation. This method has advantages over other conventional methods involving chemical agents that are associated with cytotoxicity in biological applications such as drug delivery and catalysis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nanometre-sized powders of SrTiO3 were prepared at 70-100 degrees C by the wet-chemical method of gel to crystallite (G-C) conversion. The crystallite sizes obtained were in the range 5-13 nm, as estimated by transmission electron microscopy (TEM) studies. The photocatalytic activities of these powders in the mineralization of phenol were evaluated in comparison with Degussa P25 (TiO2). The maximum photocatalytic activity was observed for powders annealed in the range 1100-1300 degrees C. The optical spectra of the particle suspensions in water showed broadened absorption around the band gap region, together with the appearance of an absorption maximum in the UV region. The effect of inorganic oxidizing species as electron scavengers on the rate of the photocatalytic degradation of phenol was studied. The influence of bulk and surface defects, which participate in the charge transfer process during photocatalysis, was investigated systematically.
Resumo:
We assume the large-scale diffuse magnetic field of the Sun to originate from the poloidal component of a dynamo operating at the base of the convection zone, whereas the sunspots are due to the toroidal component. The evolution of the poloidal component is studied to model the poleward migration of the diffuse field seen on the solar surface and the polar reversal at the time of sunspot maxima (Dikpati and Choudhuri 1994, 1995).
Resumo:
The nuclear magnetic resonance imaging technique has been used to obtain images of different transverse and vertical sections in groundnut and sunflower seeds. Separate images have been obtained for oil and water components in the seeds. The spatial distribution of oil and water inside the seed has been obtained from the detailed analysis of the images. In the immature groundnut seeds obtained commercially, complementary oil and water distributions have been observed. Attempts have been made to explain these results.
Resumo:
Although the sunspots migrate towards the equator, the large-scale weak diffuse magnetic fields of the Sun migrate poleward with the solar cycle, the polar field reversing at the time of the sunspot maxima. We apply the vector model of Dikpati and Choudhuri (1994, Paper I) to fit these observations. The dynamo layer at the base of the convection zone is taken to be the source of the diffuse field, which is then evolved in the convection zone subject to meridional circulation and turbulent diffusion. We find that the longitudinally averaged observational data can be fitted reasonably well both for positive and negative values of the alpha-effect by adjusting the subsurface meridional flow suitably. The model will be extended in a future paper to include the decay of active regions as an extra source of the diffuse field, which may be necessary to explain the probable phase lag between B-tau and B-phi at lower latitudes.
Resumo:
We present photoluminescence and reflectance spectra of GaAs/Al-x Ga-1-x As quantum wells in a magnetic field for the Faraday geometry. The photoluminescence peaks recorded are among the most intense and narrow reported to date. This has allowed us to study the behavior of closely spaced bound exciton lines under a magnetic field. Several new features including magnetic field induced splitting of the bound exciton emission peaks are reported.
Resumo:
Coarse BO2·xH2O (2 < x < 80) gels, free of anion contaminants react with A(OH)2 under refluxing conditions at 70�100°C giving rise to crystallites of single phased, nanometer size powders of ABO3 perovskites (A = Ba, Sr, Ca, Mg, Pb; B = Zr, Ti, Sn). Solid solutions of perovskites could be prepared from compositionally modified gels or mixtures of A(OH)2. Donor doped perovskites could also be prepared from the same method so that the products after processing are often semiconducting. Faster interfacial diffusion of A2+ ions into the gel generates the crystalline regions whose composition is controllable by the A/B ratio as well as the A(OH)2 concentration.
Resumo:
Abstract: The dynamics of poly(2-vinylpyridine) in chloroform solution has been examined by C-13 spin-lattice relaxation time and NOE measurements as a function of temperature. The experiments were performed at 50.3 and 100.6 MHz. The backbone carbon relaxation data have been analyzed in terms of six motional models. Among these models, the models which consider conformational transitions and bond librations for the backbone were found to be more successful. Pyridyl ring motion has been modeled as a restricted rotation with the rotational amplitude varying with temperature. The activation energy parameters obtained from the relaxation data of the pyridyl ring carbon have been compared with the energy barrier for ring rotation estimated from conformational energy calculations using the AM1 semiempirical quantum chemical method. The results of the conformational energy calculations support the description of pyridyl ring motion as a restricted rotation.
Resumo:
We show that the substrate affects the interparticle spacing in monolayer arrays with hexagonal order formed by self-assembly of polymer grafted nanoparticles. Remarkably, arrays with square packing were formed due to convective shearing at a liquid surface induced by miscibility of colloidal solution with the substrate.
Resumo:
Hollandite oxides of the type Bi1.7-xPbxV8O16 have been synthesized. The electrical resistivity studies show that the conductivity improves upon Pb substitution. The feasibility of Li intercalation in the system has been established. Magnetic susceptibility studies on the pure and Li intercalated phases show that except for pure Bi1.7V8O16, all phases exhibit Pauli paramagnetism. No superconductivity is encountered down to 12 K in any of the phases. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
he specific heats of EUNi(5)P(3), an antiferromagnet, and EuNi2P2, a mixed-valence compound, have been measured between 0.4 and 30 K in magnetic fields of, respectively, 0, 0.5, 1, 1.5, 2.5, 5, and 7 T, and 0 and 7 T. In zero field the specific heat of EuNi5P3 shows a h-like anomaly with a maximum at 8.3 K. With increasing field in the range 0-2.5 T, the maximum shifts to lower temperatures, as expected for an antiferromagnet. In higher fields the antiferromagnetic ordering is destroyed and the magnetic part of the specific heat approaches a Schottky anomaly that is consistent with expectations for the crystal-field/Zeeman levels. In low fields and for temperatures between 1.5 acid 5 K the magnetic contribution to the specific heat is proportional to the temperature, indicating a high density of excited states with an energy dependence that is very unusual for an antiferromagnet. The entropy associated with the magnetic ordering is similar to R In8, confirming that only the Eu2+-with J=7/2, S=7/2, L=0-orders below 30 R. In zero field approximately 20% of the entropy occurs above the Neel temperature, consistent. with the usual amount of short-range order observed in antiferromagnets. The hyperfine magnetic field at the Eu nuclei in EUNi(5)P(3) is 33.3 T, in good agreement with a value calculated from electron-nuclear double resonance measurements. For EuNi2P2 the specific heat is nearly field independent and shows no evidence of magnetic ordering or hyperfine fields. The coefficient of the electron contribution to the specific heat is similar to 100 mJ/mol K-2.