945 resultados para lung nodule
Resumo:
We isolated a stem cell subpopulation from human lung cancer A549 cells using FACS/Hoechst 33342. This side population (SP), which comprised 24% of the total cell population, totally disappeared after treatment with the selective ABCG 2 inhibitor fumitremorgin C. In a repopulation study, isolated SP and non-SP cells were each able to generate a heterogeneous population of SP and non-SP cells, but this repopulation occurred more rapidly in SP cells than non-SP. An MTT assay and cell cycle distribution analysis reveal a similar profile between SP and non-SP groups. However, in the presence of doxorubicin (DOX) and methotrexate (MTX), SP cells showed significantly lower Annexin V staining when compared to non-SP cells. Taken together, these results demonstrate that SP cells have an active regeneration capacity and high anti-apoptotic activity compared with non-SP cells. Furthermore, our GeneChip data revealed a heightened mRNA expression of ABCG2 and ABCC2 in SP cells. Overall these data explain why the SP of A549 has a unique ability to resist DOX and MTX treatments. Therefore, we suggest that the expression of the ABCG2 transporter plays an important role in the multidrug resistance phenotype of A549 SP cells.
Resumo:
Postnatal lung development is not well characterized in mice, especially the time point when alveolarization is completed. Using the total length and the length density of the free septal edge as measured for the formation of new septa, we followed alveolarization throughout postnatal lung development (days 2-125). Furthermore, the alveolar surface area was estimated. The formation of new septa was observed until day 36. Approximately 10% of the septa present in adult mice were formed prenatally by branching morphogenesis, approximately 50% were generated postnatally before and approximately 40% after maturation of the alveolar microvasculature. Approximately 5% of the alveolar surface area present during adulthood was present before alveolarization started, approximately 55% was formed during alveolarization (days 4-36) and approximately 40% afterward due to growth processes. We conclude that alveolarization continues until young adulthood and that the maturation of the alveolar microvasculature does not preclude further alveolarization.
Resumo:
Alveoli are formed in the lung by the insertion of secondary tissue folds, termed septa, which are subsequently remodeled to form the mature alveolar wall. Secondary septation requires interplay between three cell types: endothelial cells forming capillaries, contractile interstitial myofibroblasts, and epithelial cells. Here, we report that postnatal lung alveolization critically requires ephrinB2, a ligand for Eph receptor tyrosine kinases expressed by the microvasculature. Mice homozygous for the hypomorphic knockin allele ephrinB2DeltaV/DeltaV, encoding mutant ephrinB2 with a disrupted C-terminal PDZ interaction motif, show severe postnatal lung defects including an almost complete absence of lung alveoli and abnormal and disorganized elastic matrix. Lung alveolar formation is not sensitive to loss of ephrinB2 cytoplasmic tyrosine phosphorylation sites. Postnatal day 1 mutant lungs show extracellular matrix alterations without differences in proportions of major distal cell populations. We conclude that lung alveolar formation relies on endothelial ephrinB2 function.
Resumo:
BACKGROUND: Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R) injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells. METHODS: Rats were randomly assigned to a control, Celsior (CE) or Celsior + surfactant (CE+S) group (n = 5 each). In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4 degrees C and 50 min of reperfusion at 37 degrees C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups) or immediately after sacrifice (Control), the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells. RESULTS: Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation): CE: 160 mm3 (0.61) vs. CE+S: 4 mm3 (0.75); p < 0.05) and the development of atelectases (CE: 342 mm3 (0.90) vs. CE+S: 0 mm3; p < 0.05) but led to a higher degree of peribronchovascular edema (CE: 89 mm3 (0.39) vs. CE+S: 268 mm3 (0.43); p < 0.05). Alveolar type II cells were similarly swollen in CE (423 microm3(0.10)) and CE+S (481 microm3(0.10)) compared with controls (323 microm3(0.07); p < 0.05 vs. CE and CE+S). The number of lamellar bodies was increased and the mean lamellar body volume was decreased in both CE groups compared with the control group (p < 0.05). CONCLUSION: Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of peribronchovascular edema. Morphological changes of alveolar type II cells due to I/R are not affected by surfactant treatment. The beneficial effects of exogenous surfactant therapy are related to the intraalveolar activity of the exogenous surfactant.
Resumo:
BACKGROUND: Outcome after lung transplantation (LTx) is affected by the onset of bronchiolitis obliterans syndrome (BOS) and lung function decline. Reduced health-related quality of life (HRQL) and physical mobility have been shown in patients developing BOS, but the impact on the capacity to walk is unknown. We aimed to compare the long-term HRQL and 6-minute walk test (6MWT) between lung recipients affected or not by BOS Grade > or =2. METHODS: Fifty-eight patients were prospectively followed for 5.6 +/- 2.9 years after LTx. Assessments included the St George's Respiratory Questionnaire (SGRQ) and the 6MWT, which were performed yearly. Moreover, clinical complications were recorded to estimate the proportion of the follow-up time lived without clinical intercurrences after transplant. Analyses were performed using adjusted linear regression and repeated-measures analysis of variance. RESULTS: BOS was a significant predictor of lower SGRQ scores (p < 0.01) and reduced time free of clinical complications (p = 0.001), but not of 6MWT distance (p = 0.12). At 7 years post-transplant, results were: 69.0 +/- 21.8% vs 86.9 +/- 5.6%, p < 0.05 (SGRQ); 58.5 +/- 21.6% vs 88.7 +/- 11.4%, p < 0.01 (proportion of time lived without clinical complications); and 82.2 +/- 10.9% vs 91.9 +/- 14.2%, p = 0.27 (percent of predicted 6MWT), respectively, for patients with BOS and without BOS. CONCLUSIONS: Despite significantly less time lived without clinical complications and progressive decline of self-reported health status, the capacity to walk of patients affected by BOS remained relatively stable over time. These findings may indicate that the development of moderate to severe BOS does not prevent lung recipients from walking independently and pursuing an autonomous life.
Toward an early diagnosis of lung cancer: an autoantibody signature for squamous cell lung carcinoma
Resumo:
Serum-based diagnosis offers the prospect of early lung carcinoma detection and of differentiation between benign and malignant nodules identified by CT. One major challenge toward a future blood-based diagnostic consists in showing that seroreactivity patterns allow for discriminating lung cancer patients not only from normal controls but also from patients with non-tumor lung pathologies. We addressed this question for squamous cell lung cancer, one of the most common lung tumor types. Using a panel of 82 phage-peptide clones, which express potential autoantigens, we performed serological spot assay. We screened 108 sera, including 39 sera from squamous cell lung cancer patients, 29 sera from patients with other non-tumor lung pathologies, and 40 sera from volunteers without known disease. To classify the serum groups, we employed the standard Naïve Bayesian method combined with a subset selection approach. We were able to separate squamous cell lung carcinoma and normal sera with an accuracy of 93%. Low-grade squamous cell lung carcinoma were separated from normal sera with an accuracy of 92.9%. We were able to distinguish squamous cell lung carcinoma from non-tumor lung pathologies with an accuracy of 83%. Three phage-peptide clones with sequence homology to ROCK1, PRKCB1 and KIAA0376 reacted with more than 15% of the cancer sera, but neither with normal nor with non-tumor lung pathology sera. Our study demonstrates that seroreactivity profiles combined with statistical classification methods have great potential for discriminating patients with squamous cell lung carcinoma not only from normal controls but also from patients with non-tumor lung pathologies.
Resumo:
BACKGROUND: Aspiration pneumonia (AP) and primary lung abscess (PLA), are diseases following aspiration of infectious material from the oropharynx or stomach. An antibiotic therapy, also covering anaerobic pathogens, is the treatment of choice. In this study we compared moxifloxacin (MXF) and ampicillin/sulbactam (AMP/SUL) concerning efficacy and safety in the treatment of AP and PLA. METHODS: Patients with pulmonary infections following aspiration were included in a prospective, open-label, randomized, multicenter trial. Sequential antibiotic therapy with MXF or AMP/SUL was administered until complete radiologic and clinical resolution. RESULTS: A total of 139 patients with AP and PLA were included, 96 were evaluable for efficacy (EE, 48 patients in each treatment group). The overall clinical response rates in both groups were numerically identical (66.7%). MXF and AMP/SUL were both well tolerated, even after long-term administration [median duration of treatment (range) in days MXF versus AMP/SUL: AP 11 (4-45) vs 9 (3-25), PLA 30.5 (7-158) vs 35 (6-90)]. CONCLUSION: In the treatment of aspiration-associated pulmonary infections moxifloxacin appears to be clinically as effective and as safe as ampicillin/sulbactam; but, however, having the additional benefit of a more convenient (400 mg qd) treatment.
Resumo:
OBJECTIVE: The objective of this prospective study was to compare the clinical value of procalcitonin (PCT) and C-reactive protein (CrP) plasma concentrations in their postoperative course after decortication. METHODS: Twenty-two patients requiring surgery for pleural empyema were chosen for this prospective study. Routine blood samples including CrP and PCT plasma concentrations were taken before the operation and on the 1st, 2nd, 3rd, and 7th postoperative day. RESULTS: Due to infection PCT and CrP were elevated preoperatively. In the postoperative course both PCT and CrP reached peak-levels on day 2 with values up to 43.55 ng/ml and 384.00 mg/l, respectively. In PCT the rise was followed by a clear decrease in 20 (90.9 %) patients until day 7. In contrast the CrP levels decreased slowly and only seven (54.5%) patients had values of 100 mg/l or below on day 7. PCT showed a better correlation with the clinic in case of septic course than CrP does. CONCLUSIONS: PCT reflects postoperative clinical course more accurately than CrP. Therefore, PCT is a more appropriate laboratory parameter to monitor patients after surgery for pleural empyema.
Resumo:
Smoking is known to be linked to skin ageing and there is evidence for premature senescence of parenchymal lung fibroblasts in emphysema. To reveal whether the emphysema-related changes in cellular phenotype extend beyond the lung, we compared the proliferation characteristics of lung and skin fibroblasts between patients with and without emphysema. Parenchymal lung fibroblasts and skin fibroblasts from the upper torso (thus limiting sun exposure bias) were obtained from patients without, or with mild, or with moderate to severe emphysema undergoing lung surgery. We analysed proliferation rate, population doublings (PD), staining for senescence-associated beta-galactosidase (beta-gal) and gene expression of IGFBP-3 and IGFBP-rP1. Population doubling time of lung fibroblasts differed between control, mild, and moderate to severe emphysema (median (IQR) 29.7(10.0), 33.4(6.1), 44.4(21.2) h; p=0.012) and staining for beta-gal was elevated in moderate to severe emphysema. Compared to control subjects, skin fibroblasts from patients with emphysema did not differ with respect to proliferation rate, PD and beta-gal staining, and showed a lower abundance of mRNA for IGFBP-3 and -rP1 (p<0.05, each). These results suggest that the induction of a senescent fibroblast phenotype by cigarette smoke, as observed in emphysema, primarily occurs in the lung.
Resumo:
Stereoselectivity has to be considered for pharmacodynamic and pharmacokinetic features of ketamine. Stereoselective biotransformation of ketamine was investigated in equine microsomes in vitro. Concentration curves were constructed over time, and enzyme activity was determined for different substrate concentrations using equine liver and lung microsomes. The concentrations of R/S-ketamine and R/S-norketamine were determined by enantioselective capillary electrophoresis. A two-phase model based on Hill kinetics was used to analyze the biotransformation of R/S-ketamine into R/S-norketamine and, in a second step, into R/S-downstream metabolites. In liver and lung microsomes, levels of R-ketamine exceeded those of S-ketamine at all time points and S-norketamine exceeded R-norketamine at time points below the maximum concentration. In liver and lung microsomes, significant differences in the enzyme velocity (V(max)) were observed between S- and R-norketamine formation and between V(max) of S-norketamine formation when S-ketamine was compared to S-ketamine of the racemate. Our investigations in microsomal reactions in vitro suggest that stereoselective ketamine biotransformation in horses occurs in the liver and the lung with a slower elimination of S-ketamine in the presence of R-ketamine. Scaling of the in vitro parameters to liver and lung organ clearances provided an excellent fit with previously published in vivo data and confirmed a lung first-pass effect.
Resumo:
BACKGROUND: Activation of the complement system and polymorphonuclear neutrophilic leukocytes plays a major role in mediating reperfusion injury after lung transplantation. We hypothesized that early interference with complement activation would reduce lung reperfusion injury after transplantation. METHODS: Unilateral left lung autotransplantation was performed in 6 sheep. After hilar stripping the left lung was flushed with Euro-Collins solution and preserved for 2 hours in situ at 15 degrees C. After reperfusion the right main bronchus and pulmonary artery were occluded, leaving the animal dependent on the reperfused lung (reperfused group). C1-esterase inhibitor group animals (n = 6) received 200 U/kg body weight of C1-esterase inhibitor as a short infusion, half 10 minutes before, the other half 10 minutes after reperfusion. Controls (n = 6) underwent hilar preparation only. Pulmonary function was assessed by alveolar-arterial oxygen difference and pulmonary vascular resistance. The release of beta-N-acetylglucosaminidase served as indicator of polymorphonuclear neutrophilic leukocyte activation. Extravascular lung water was an indicator for pulmonary edema formation. Biopsy specimens were taken from all groups 3 hours after reperfusion for light and electron microscopy. RESULTS: In the reperfused group, alveolar-arterial oxygen difference and pulmonary vascular resistance were significantly elevated after reperfusion. All animals developed frank alveolar edema. The biochemical marker beta-N-acetylglucosaminidase showed significant leukocyte activation. In the C1-esterase inhibitor group, alveolar-arterial oxygen difference, pulmonary vascular resistance, and the level of polymorphonuclear neutrophilic leukocyte activation were significantly lower. CONCLUSIONS: Treatment with C1-esterase inhibitor reduces reperfusion injury and improves pulmonary function in this experimental model.