982 resultados para linear measures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Nigeria-German Kainji Lake Fisheries Promotion Project (KLFPP) promoted the distribution of genetically improved cocks to the Kainji Lake (Nigeria) fishing communities aiming to compensate for possible short-term income losses due to the implementation of fisheries management measures restricting the use of the Lake's resources and to provide alternative sources for income generation, especially for the women. Out of 5,075 cocks produced, 4,171 cocks were distributed at subsidized prices mainly to women in 116 fishing villages of Kainji Lake. During an impact survey carried out in 12 villages, 6-24 months after distribution, only 25% of the cocks distributed were seen. However, potential income for each beneficiary from the hybrid offspring was estimated at minimum 1,000 Naira per year

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is concerned with the problem of determining the dynamic characteristics of complicated engineering systems and structures from the measurements made during dynamic tests or natural excitations. Particular attention is given to the identification and modeling of the behavior of structural dynamic systems in the nonlinear hysteretic response regime. Once a model for the system has been identified, it is intended to use this model to assess the condition of the system and to predict the response to future excitations.

A new identification methodology based upon a generalization of the method of modal identification for multi-degree-of-freedom dynaimcal systems subjected to base motion is developed. The situation considered herein is that in which only the base input and the response of a small number of degrees-of-freedom of the system are measured. In this method, called the generalized modal identification method, the response is separated into "modes" which are analogous to those of a linear system. Both parametric and nonparametric models can be employed to extract the unknown nature, hysteretic or nonhysteretic, of the generalized restoring force for each mode.

In this study, a simple four-term nonparametric model is used first to provide a nonhysteretic estimate of the nonlinear stiffness and energy dissipation behavior. To extract the hysteretic nature of nonlinear systems, a two-parameter distributed element model is then employed. This model exploits the results of the nonparametric identification as an initial estimate for the model parameters. This approach greatly improves the convergence of the subsequent optimization process.

The capability of the new method is verified using simulated response data from a three-degree-of-freedom system. The new method is also applied to the analysis of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test of a full-scale six-story steel-frame structure.

The new system identification method described has been found to be both accurate and computationally efficient. It is believed that it will provide a useful tool for the analysis of structural response data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The various singularities and instabilities which arise in the modulation theory of dispersive wavetrains are studied. Primary interest is in the theory of nonlinear waves, but a study of associated questions in linear theory provides background information and is of independent interest.

The full modulation theory is developed in general terms. In the first approximation for slow modulations, the modulation equations are solved. In both the linear and nonlinear theories, singularities and regions of multivalued modulations are predicted. Higher order effects are considered to evaluate this first order theory. An improved approximation is presented which gives the true behavior in the singular regions. For the linear case, the end result can be interpreted as the overlap of elementary wavetrains. In the nonlinear case, it is found that a sufficiently strong nonlinearity prevents this overlap. Transition zones with a predictable structure replace the singular regions.

For linear problems, exact solutions are found by Fourier integrals and other superposition techniques. These show the true behavior when breaking modulations are predicted.

A numerical study is made for the anharmonic lattice to assess the nonlinear theory. This confirms the theoretical predictions of nonlinear group velocities, group splitting, and wavetrain instability, as well as higher order effects in the singular regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A means of assessing the effectiveness of methods used in the numerical solution of various linear ill-posed problems is outlined. Two methods: Tikhonov' s method of regularization and the quasireversibility method of Lattès and Lions are appraised from this point of view.

In the former method, Tikhonov provides a useful means for incorporating a constraint into numerical algorithms. The analysis suggests that the approach can be generalized to embody constraints other than those employed by Tikhonov. This is effected and the general "T-method" is the result.

A T-method is used on an extended version of the backwards heat equation with spatially variable coefficients. Numerical computations based upon it are performed.

The statistical method developed by Franklin is shown to have an interpretation as a T-method. This interpretation, although somewhat loose, does explain some empirical convergence properties which are difficult to pin down via a purely statistical argument.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general theory of Whitham for slowly-varying non-linear wavetrains is extended to the case where some of the defining partial differential equations cannot be put into conservation form. Typical examples are considered in plasma dynamics and water waves in which the lack of a conservation form is due to dissipation; an additional non-conservative element, the presence of an external force, is treated for the plasma dynamics example. Certain numerical solutions of the water waves problem (the Korteweg-de Vries equation with dissipation) are considered and compared with perturbation expansions about the linearized solution; it is found that the first correction term in the perturbation expansion is an excellent qualitative indicator of the deviation of the dissipative decay rate from linearity.

A method for deriving necessary and sufficient conditions for the existence of a general uniform wavetrain solution is presented and illustrated in the plasma dynamics problem. Peaking of the plasma wave is demonstrated, and it is shown that the necessary and sufficient existence conditions are essentially equivalent to the statement that no wave may have an amplitude larger than the peaked wave.

A new type of fully non-linear stability criterion is developed for the plasma uniform wavetrain. It is shown explicitly that this wavetrain is stable in the near-linear limit. The nature of this new type of stability is discussed.

Steady shock solutions are also considered. By a quite general method, it is demonstrated that the plasma equations studied here have no steady shock solutions whatsoever. A special type of steady shock is proposed, in which a uniform wavetrain joins across a jump discontinuity to a constant state. Such shocks may indeed exist for the Korteweg-de Vries equation, but are barred from the plasma problem because entropy would decrease across the shock front.

Finally, a way of including the Landau damping mechanism in the plasma equations is given. It involves putting in a dissipation term of convolution integral form, and parallels a similar approach of Whitham in water wave theory. An important application of this would be towards resolving long-standing difficulties about the "collisionless" shock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some aspects of wave propagation in thin elastic shells are considered. The governing equations are derived by a method which makes their relationship to the exact equations of linear elasticity quite clear. Finite wave propagation speeds are ensured by the inclusion of the appropriate physical effects.

The problem of a constant pressure front moving with constant velocity along a semi-infinite circular cylindrical shell is studied. The behavior of the solution immediately under the leading wave is found, as well as the short time solution behind the characteristic wavefronts. The main long time disturbance is found to travel with the velocity of very long longitudinal waves in a bar and an expression for this part of the solution is given.

When a constant moment is applied to the lip of an open spherical shell, there is an interesting effect due to the focusing of the waves. This phenomenon is studied and an expression is derived for the wavefront behavior for the first passage of the leading wave and its first reflection.

For the two problems mentioned, the method used involves reducing the governing partial differential equations to ordinary differential equations by means of a Laplace transform in time. The information sought is then extracted by doing the appropriate asymptotic expansion with the Laplace variable as parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distinguished character of Particularly Sensitive Sea Areas (PSSAs) is that every application for PSSAs must be accompanied by Associated Protected Measures (APMs) which can make PSSAs efficient in practice.1 That is why APMs are regarded as the core feature of every PSSA.2 APM is “an international rule or standard that falls within the purview of an international maritime organization (IMO) and regulates international maritime activities for the protection of the area at risk.” So far, APMs have been approved by IMO as following: -Compulsory or recommended pilotage -Mandatory ship reporting -An area to be avoided -Traffic separation schemes -Discharge prohibition or regulations -Mandatory no anchoring areas -Deep water routes -Emission control areas (PDF contains 5 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the following singularly perturbed linear two-point boundary-value problem:

Ly(x) ≡ Ω(ε)D_xy(x) - A(x,ε)y(x) = f(x,ε) 0≤x≤1 (1a)

By ≡ L(ε)y(0) + R(ε)y(1) = g(ε) ε → 0^+ (1b)

Here Ω(ε) is a diagonal matrix whose first m diagonal elements are 1 and last m elements are ε. Aside from reasonable continuity conditions placed on A, L, R, f, g, we assume the lower right mxm principle submatrix of A has no eigenvalues whose real part is zero. Under these assumptions a constructive technique is used to derive sufficient conditions for the existence of a unique solution of (1). These sufficient conditions are used to define when (1) is a regular problem. It is then shown that as ε → 0^+ the solution of a regular problem exists and converges on every closed subinterval of (0,1) to a solution of the reduced problem. The reduced problem consists of the differential equation obtained by formally setting ε equal to zero in (1a) and initial conditions obtained from the boundary conditions (1b). Several examples of regular problems are also considered.

A similar technique is used to derive the properties of the solution of a particular difference scheme used to approximate (1). Under restrictions on the boundary conditions (1b) it is shown that for the stepsize much larger than ε the solution of the difference scheme, when applied to a regular problem, accurately represents the solution of the reduced problem.

Furthermore, the existence of a similarity transformation which block diagonalizes a matrix is presented as well as exponential bounds on certain fundamental solution matrices associated with the problem (1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In January 2006 the Maumee Remedial Action Plan (RAP) Committee submitted a State II Watershed Restoration Plan for the Maumee River Great Lakes Area of Concern (AOC) area located in NW Ohio to the State of Ohio for review and endorsement (MRAC, 2006). The plan was created in order to fulfill the requirements, needs and/or use of five water quality programs including: Ohio Department of Natural Resources (DNR) Watershed Coordinator Program; Ohio EPA Great Lakes RAP Program; Ohio DNR Coastal Non-point Source Pollution Control Program; Ohio EPA Total Maximum Daily Load Program; and US Fish & Wildlife Service Natural Resources Damage Program. The plan is intended to serve as a comprehensive regional management approach for all jurisdictions, agencies, organizations, and individuals who are working to restore the watershed, waterways and associated coastal zone. The plan includes: background information and mapping regarding hydrology, geology, ecoregions, and land use, and identifies key causes and sources for water quality concerns within the six 11-digit hydrological units (HUCs), and one large river unit that comprise the Maumee AOC. Tables were also prepared that contains detailed project lists for each major watershed and was organized to facilitate the prioritization of research and planning efforts. Also key to the plan and project tables is a reference to the Ohio DNR Coastal Management Measures that may benefit from the implementation of an identified project. This paper will examine the development of the measures and their importance for coastal management and watershed planning in the Maumee AOC. (PDF contains 4 pages)