925 resultados para leaf litter sample
Resumo:
This study examines the effects of a multi-session Cognitive Bias Modification (CBM) program on interpretative biases and social anxiety in an Iranian sample. Thirty-six volunteers with a high score on social anxiety measures were recruited from a student population and randomly allocated into the experimental and control groups. In the experimental group, participants received 4 sessions of positive CBM for interpretative biases (CBM-I) over 2 weeks in the laboratory. Participants in the control condition completed a neutral task matched the active CBM-I intervention in format and duration but did not encourage positive disambiguation of socially ambiguous scenarios. The results indicated that after training the positive CBM-I group exhibited more positive (and less negative) interpretations of ambiguous scenarios and less social anxiety symptoms relative to the control condition at both 1 week post-test and 7 weeks follow-up. It is suggested that clinical trials are required to establish the clinical efficacy of this intervention for social anxiety.
Resumo:
Urban greening solutions such as green roofs help improve residents’ thermal comfort and building insulation. However, not all plants provide the same level of cooling. This is partially due to differences in plant structure and function, including different mechanisms that plants employ to regulate leaf temperature. Ranking of multiple leaf/plant traits involved in the regulation of leaf temperature (and, consequently, plants’ cooling ‘service’) is not well understood. We therefore investigated the relative importance of water loss, leaf colour, thickness and extent of pubescence for the regulation of leaf temperature, in the context of species for semi-extensive green roofs. Leaf temperature were measured with an infrared imaging camera in a range of contrasting genotypes within three plant genera (Heuchera, Salvia and Sempervivum). In three glasshouse experiments (each evaluating three or four genotypes of each genera) we varied water availability to the plants and assessed how leaf temperature altered depending on water loss and specific leaf traits. Greatest reductions in leaf temperature were closely associated with higher water loss. Additionally, in non-succulents (Heuchera, Salvia), lighter leaf colour and longer hair length (on pubescent leaves) both contributed to reduced leaf temperature. However, in succulent Sempervivum, colour/pubescence made no significant contribution; leaf thickness and water loss rate were the key regulating factors. We propose that this can lead to different plant types having significantly different potentials for cooling. We suggest that maintaining transpirational water loss by sustainable irrigation and selecting urban plants with favourable morphological traits is the key to maximising thermal benefits provided by applications such as green roofs.
Resumo:
European beech (Fagus sylvatica L.) and Norway spruce (Picea abies Karst.) are two of the most ecologically and economically important forest tree species in Europe. These two species co-occur in many locations in Europe, leading to direct competition for canopy space. Foliage characteristics of two naturally regenerated pure stands of beech and spruce with fully closed canopies were contrasted to assess the dynamic relationship between foliage adaptability to shading, stand LAI and tree growth. We found that individual leaf size is far more conservative in spruce than in beech. Individual leaf and needle area was larger at the top than at the bottom of the canopy in both species. Inverse relationship was found for specific leaf area (SLA), highest SLA values were found at lowest light availability under the canopy. There was no difference in leaf area index (LAI) between the two stands, however LAI increased from 10.8 to 14.6 m2m-2 between 2009 and 2011. Dominant trees of both species were more efficient in converting foliage mass or area to produce stem biomass, although this relationship changed with age and was species-specific. Overall, we found larger foliage plasticity in beech than in spruce in relation to light conditions, indicating larger capacity to exploit niche openings.
Resumo:
As a prelude to leaf-specific weed control using droplets targeted by a robotic weeder, amounts of herbicide required to control individual weed seedlings were estimated. Roundup Biactive was applied at doses equivalent to 1/128th to four times the recommended rate in addition to undiluted Roundup and water controls. Based on the mean ground cover of the seedlings, the recommended dose (1.5 l ha 1) was estimated and droplets were applied to individual plants by micropipette. All treatments contained 1% AS 500 SL, Agromix (adjuvant). Three weeks after application dry weights (DW) of each seedling was recorded. DW reductions of 50% were achieved in the five species tested at less than the recommended rate whereas only in one species was a 90% reduction obtained at that rate. In Galium aparine for example, 19.3 μg of glyphosate reduced DW per plant by 90% compared to the recommended dose of 8.4 μg.
Resumo:
Human observers exhibit large systematic distance-dependent biases when estimating the three-dimensional (3D) shape of objects defined by binocular image disparities. This has led some to question the utility of disparity as a cue to 3D shape and whether accurate estimation of 3D shape is at all possible. Others have argued that accurate perception is possible, but only with large continuous perspective transformations of an object. Using a stimulus that is known to elicit large distance-dependent perceptual bias (random dot stereograms of elliptical cylinders) we show that contrary to these findings the simple adoption of a more naturalistic viewing angle completely eliminates this bias. Using behavioural psychophysics, coupled with a novel surface-based reverse correlation methodology, we show that it is binocular edge and contour information that allows for accurate and precise perception and that observers actively exploit and sample this information when it is available.
Resumo:
Cacao swollen shoot virus (CSSV) causes the Cacao swollen shoot virus disease (CSSVD) and significantly reduces production in West African cacao. This study characterised the current status of the disease in the major cacao growing States in Nigeria and attempted a clarification on the manner of CSSV transmission. Two separate field surveys and sample collections were conducted in Nigeria in summer 2012 and spring 2013. PCR-based screening of cacao leaf samples and subsequent DNA sequencing showed that the disease continues to persist in Ondo and Oyo States and in new cacao sites in Abia, Akwa Ibom, Cross River and Edo States. Mealybug samples collected were identified using a robust approach involving environmental scanning electron microscopy, histology and DNA barcoding, which highlighted the importance of integrative taxonomy in the study. The results show that the genus Planococcus (Planococcus citri (Risso) and/or Planococcus minor (Maskell)) was the most abundant vector (73.5%) at the sites examined followed by Formicococcus njalensis (Laing) (19.0 %). In a laboratory study, the feeding behaviour of Pl. citri, Pseudococcus longispinus (Targioni-Tozzetti) and Pseudococcus viburni (Signoret) on cacao were investigated using electrical penetration graph (EPG) analysis. EPG waveforms reflecting intercellular stylet penetration (C), extracellular salivation (E1e), salivation in sieve elements (E1), phloem ingestion (E2), derailed stylet mechanics (F), xylem ingestion (G) and non-probing phase (Np) were analysed. Individual mealybugs exhibited marked variation within species and significantly differed (p ≤ .05) between species for E1e and E1. PCR-based assessments of the retention time for CSSV in viruliferous Pl. citri, Ps. longispinus and Ps. viburni fed on a non-cacao diet showed that CSSV was still detectable after 144 hours. These unusually long durations for a pathogen currently classified as a semi-persistent virus have implications for the design of non-malvaceous barrier crops currently being considered for the protection of new cacao plantings.
Resumo:
Stable isotope analysis of leaf waxes in a sediment core from Laguna La Gaiba, a shallow lake located at the Bolivian margin of the Pantanal wetlands, provides new perspective on vegetation and climate change in the lowland interior tropics of South America over the past 40,000 years. The carbon isotopic compositions (δ13C) of long-chain n-alkanes reveal large shifts between C3-and C4-dominated vegetation communities since the last glacial period, consistent with landscape reconstructions generated with pollen data from the same sediment core. Leaf wax δ13C values during the last glacial period reflect an open landscape composed of C4grasses and C3herbs from 41–20ka. A peak in C4abundance during the Last Glacial Maximum (LGM, ∼21ka) suggests drier or more seasonal conditions relative to the earlier glacial period, while the development of a C3-dominated forest community after 20 ka points to increased humidity during the last deglaciation. Within the Holocene, large changes in the abundance of C4 vegetation indicate a transition from drier or more seasonal conditions during the early/mid-Holocene to wetter conditions in the late Holocene coincident with increasing austral summer insolation. Strong negative correlations between leaf wax δ13C and δD values over the entire record indicate that the majority of variability in leaf wax δD at this site can be explained by variability in the magnitude of biosynthetic fractionation by different vegetation types rather than changes in meteoric water δD signatures. However, positive δD deviations from the observed δ13C–δD trends are consistent with more enriched source water and drier or more seasonal conditions during the early/mid-Holocene and LGM. Overall, our record adds to evidence of varying influence of glacial boundary conditions and orbital forcing on South American Summer Monsoon precipitation in different regions of the South American tropics. Moreover, the relationships between leaf wax stable isotopes and pollen data observed at this site underscore the complementary nature of pollen and leaf wax δ13C data for reconstructing past vegetation changes and the potentially large effects of such changes on leaf wax δD signatures.
Resumo:
Accurate knowledge of species’ habitat associations is important for conservation planning and policy. Assessing habitat associations is a vital precursor to selecting appropriate indicator species for prioritising sites for conservation or assessing trends in habitat quality. However, much existing knowledge is based on qualitative expert opinion or local scale studies, and may not remain accurate across different spatial scales or geographic locations. Data from biological recording schemes have the potential to provide objective measures of habitat association, with the ability to account for spatial variation. We used data on 50 British butterfly species as a test case to investigate the correspondence of data-derived measures of habitat association with expert opinion, from two different butterfly recording schemes. One scheme collected large quantities of occurrence data (c. 3 million records) and the other, lower quantities of standardised monitoring data (c. 1400 sites). We used general linear mixed effects models to derive scores of association with broad-leaf woodland for both datasets and compared them with scores canvassed from experts. Scores derived from occurrence and abundance data both showed strongly positive correlations with expert opinion. However, only for occurrence data did these fell within the range of correlations between experts. Data-derived scores showed regional spatial variation in the strength of butterfly associations with broad-leaf woodland, with a significant latitudinal trend in 26% of species. Sub-sampling of the data suggested a mean sample size of 5000 occurrence records per species to gain an accurate estimation of habitat association, although habitat specialists are likely to be readily detected using several hundred records. Occurrence data from recording schemes can thus provide easily obtained, objective, quantitative measures of habitat association.
Resumo:
The leaves of the olive plant (Olea europaea) are rich in polyphenols, of which oleuropein and hydroxytyrosol (HT) are most characteristic. Such polyphenols have been demonstrated to favourably modify a variety of cardiovascular risk factors. The aim of the present intervention was to investigate the influence of olive leaf extract (OLE) on vascular function and inflammation in a postprandial setting and to link physiological outcomes with absorbed phenolics. A randomised, double-blind, placebo-controlled, cross-over, acute intervention trial was conducted with eighteen healthy volunteers (nine male, nine female), who consumed either OLE (51 mg oleuropein; 10mg HT), or a matched control (separated by a 4-week wash out) on a single occasion. Vascular function was measured by digital volume pulse (DVP), while blood collected at baseline, 1, 3 and 6 h was cultured for 24 h in the presence of lipopolysaccharide in order to investigate effects on cytokine production. Urine was analysed for phenolic metabolites by HPLC. DVP-stiffness index and ex vivo IL-8 production were significantly reduced (P < 0.05) after consumption of OLE compared to the control. These effects were accompanied by the excretion of several phenolic metabolites, namely HT and oleuropein derivatives, which peaked in urine after 8-24 h. The present study provides the first evidence that OLE positively modulates vascular function and IL-8 production in vivo, adding to growing evidence that olive phenolics could be beneficial for health.
Resumo:
This article contains raw and processed data related to research published by Bryant et al. [1]. Data was obtained by MS-based proteomics, analysing trichome-enriched, trichome-depleted and whole leaf samples taken from the medicinal plant Artemisia annua and searching the acquired MS/MS data against a recently published contig database [2] and other genomic and proteomic sequence databases for comparison. The processed data shows that an order-of-magnitude more proteins have been identified from trichome-enriched Artemisia annua samples in comparison to previously published data. Proteins known to have a role in the biosynthesis of artemisinin and other highly abundant proteins were found which imply additional enzymatically driven processes occurring within the trichomes that are significant for the biosynthesis of artemisinin.
Resumo:
Rainfastness is the ability of agrochemical deposits to resist wash-off by rain and other related environmental phenomena. This work reports laboratory-scale and raintower studies of the rainfastness of fluorescently labeled poly(vinyl alcohol) (PVA) using fluorescent microscopy combined with image analysis. Samples of hydrolyzed PVA exhibit improved rainfastness over a threshold molecular weight, which correlates with PVA film dissolution, swelling, and crystalline properties. It was also established that the rainfastness of PVA scaled with the molecular weight over this threshold. These PVA samples were further characterized in order to determine the effect of the crystallinity on rainfastness. The quantification of rainfastness is of great interest to the field of agrochemical formulation development in order to improve the efficacy of pesticides and their adjuvants.
Pozzolanic behavior of bamboo leaf ash: Characterization and determination of the kinetic parameters
Resumo:
The paper presents a characterization and study of the pozzolanic behavior between calcium hydroxide (CH) and bamboo leaf ash (BLAsh), which was obtained by calcining bamboo leaves at 600 degrees C for 2 h in a laboratory electric furnace. To evaluate the pozzolanic behavior the conductometric method was used, which is based on the measurement of the electrical conductivity in a BLAsh/CH solution with the reaction time. Later, the kinetic parameters are quantified by applying a kinetic-diffusive model. The kinetic parameters that characterize the process (in particular, the reaction rate constant and free energy of activation) were determined with relative accuracy in the fitting process of the model. The pozzolanic activity is quantitatively evaluated according to the values obtained of the kinetic parameters. Other experimental techniques, such as X-ray diffraction (XRD) and scanning electron microscopy (SEM), were also employed. The results show that this kind of ash is formed by silica with a completely amorphous nature and a high pozzolanic activity. The correlation between the values of free energy of activation (Delta G(#)) and the reaction rate constants (K) are in correspondence with the theoretical studies about the rate processes reported in the literature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The determination of the amount of sample units that will compose the sample express the optimization of the workforce, and reduce errors inherent in the report of recommendation and evaluation of soil fertility. This study aimed to determine in three systems use and soil management, the numbers of units samples design, needed to form the composed sample, for evaluation of soil fertility. It was concluded that the number of sample units needed to compose the composed sample to determination the attributes of organic matter, pH, P, K, Ca, Mg, Al and H+Al and base saturation of soil vary by use and soil management and error acceptable to the mean estimate. For the same depth of collected, increasing the number of sample units, reduced the percentage error in estimating the average, allowing the recommendation of 14, 14 and 11 sample in management with native vegetation, pasture cultivation and corn, respectively, for a error 20% on the mean estimate.
An improved estimate of leaf area index based on the histogram analysis of hemispherical photographs
Resumo:
Leaf area index (LAI) is a key parameter that affects the surface fluxes of energy, mass, and momentum over vegetated lands, but observational measurements are scarce, especially in remote areas with complex canopy structure. In this paper we present an indirect method to calculate the LAI based on the analyses of histograms of hemispherical photographs. The optimal threshold value (OTV), the gray-level required to separate the background (sky) and the foreground (leaves), was analytically calculated using the entropy crossover method (Sahoo, P.K., Slaaf, D.W., Albert, T.A., 1997. Threshold selection using a minimal histogram entropy difference. Optical Engineering 36(7) 1976-1981). The OTV was used to calculate the LAI using the well-known gap fraction method. This methodology was tested in two different ecosystems, including Amazon forest and pasturelands in Brazil. In general, the error between observed and calculated LAI was similar to 6%. The methodology presented is suitable for the calculation of LAI since it is responsive to sky conditions, automatic, easy to implement, faster than commercially available software, and requires less data storage. (C) 2008 Elsevier B.V. All rights reserved.