996 resultados para late potential
Resumo:
To achieve the goal of sustained donor-specifi c transplantation (Tx) tolerance, research efforts are now focusing on therapies based on specifi c cell subsets with regulatory properties. We and others have previously highlighted the therapeutic potential of naturally occurring CD4+CD25+Foxp3+ regulatory T cells (nTreg) in promoting long-term graft acceptance. Using more stringent experimental Tx models, we were however confronted to limitations. Indeed, while the transfer of antigenspecifi c nTreg promoted long-term MHC-mismatched skin allograft acceptance in lymphopenic mice in the absence of any immunosuppressive drug, allograft survival was only slightly prolonged when nTreg were transferred alone into non-lymphopenic mice. This suggested that in more stringent conditions, adjuvant therapies may be needed to effectively control alloreactive T cells (Teff). Whether and how the expansion of the Treg pool could be best combined with current immunosuppressive regimens in clinical settings remains to be defi ned. In this study, we have used in vitro assays and an in vivo skin Tx model to investigate the effects of various immunosuppressive drugs on the survival, proliferation and effector function of Teff and nTreg in response to alloantigens. Teff proliferation was inhibited in a dose-dependent manner by rapamycin and cyclosporine A, while anti-CD154 mAb only marginally affected Teff survival, proliferation and effector fucntion in vitro. Rapamycin promoted apoptosis of Teff as compared to nTreg that were more resistant in the presence of IL-2. In vivo, the transfer and/or expansion of Treg could be advantageously combined with rapamycin and anti-CD154 mAb treatment to signifi cantly prolong MHC-mismatched skin allografts survival in non-lymphopenic recipients. Taken together our data indicate that immunosuppressive drugs differentially target T-cell subsets and that some regimens could promote Treg expansion while controlling the Teff pool in response to alloantigens.
Resumo:
In Buenos Aires, the most crowded city of Argentina, there is a potential risk of dengue virus transmission by the mosquito Aedes aegypti during late summer. The temporal patterns of oviposition activity and abundance of breeding sites of this vector were studied in two cemeteries of the city. Between September 1998 and August 1999, we examined 142 ovitraps weekly and a total of 18,010 water-filled containers. Both study areas showed remarkable differences in the percentages of positive ovitraps (19% vs 8%) and breeding sites (18% vs 1%), but similar temporal abundance patterns. The percentage of breeding sites was higher in summer and autumn than in spring and winter, and the percentage of positive ovitraps was higher in summer than in the other three seasons. Immatures were recorded from the first week of October to the second week of July, and oviposition activity from the third week of October until the end of April. In both cemeteries and with both methodologies the highest infestation levels were registered in March (ovitraps: 41.8% and 20.6%, breeding sites: 39.2% and 3.4%). These highest abundances took place after several months with mean temperatures above 20ºC and accumulated rainfalls above 150 mm. A sharp decline in oviposition activity was observed when monthly mean temperature decreased to 16.5ºC, and no eggs were found below 14.8ºC. Seasonal fluctuation of Ae. aegypti abundances in mid-latitudes like Buenos Aires would allow reduction of the egg mosquito population through the elimination of containers during the coldest months, which are free of adults.
Resumo:
Kidneys are the main regulator of salt homeostasis and blood pressure. In the distal region of the tubule active Na-transport is finely tuned. This transport is regulated by various hormonal pathways including aldosterone that regulates the reabsorption at the level of the ASDN, comprising the late DCT, the CNT and the CCD. In the ASDN, the amiloride-sensitive epithelial Na-channel (ENaC) plays a major role in Na-homeostasis, as evidenced by gain-of function mutations in the genes encoding ENaC, causing Liddle's syndrome, a severe form of salt-sensitive hypertension. In this disease, regulation of ENaC is compromised due to mutations that delete or mutate a PY-motif in ENaC. Such mutations interfere with Nedd4-2- dependent ubiquitylation of ENaC, leading to reduced endocytosis of the channel, and consequently to increased channel activity at the cell surface. After endocytosis ENaC is targeted to the lysosome and rapidly degraded. Similarly to other ubiquitylated and endocytosed plasma membrane proteins (such as the EGFR), it is likely that the multi-protein complex system ESCRT is involved. To investigate the involvement of this system we tested the role of one of the ESCRT proteins, Tsg101. Here we show that Tsg101 interacts endogenously and in transfected HEK-293 cells with all three ENaC sub-units. Furthermore, mutations of cytoplasmic lysines of ENaC subunits lead to the disruption of this interaction, indicating a potential involvement of ubiquitin in Tsg101 / ENaC interaction. Tsg101 knockdown in renal epithelial cells increases the total and cell surface pool of ENaC, thus implying TsglOl and consequently the ESCRT system in ENaC degradation by the endosomal/lysosomal system. - Les reins sont les principaux organes responsables de la régulation de la pression artérielle ainsi que de la balance saline du corps. Dans la région distale du tubule, le transport actif de sodium est finement régulé. Ce transport est contrôlé par plusieurs hormones comme l'aldostérone, qui régule la réabsorption au niveau de l'ASDN, segment comprenant la fin du DCT, le CNT et le CCD. Dans l'ASDN, le canal à sodium épithélial sensible à l'amiloride (ENaC) joue un rôle majeur dans l'homéostasie sodique, comme cela fut démontré par les mutations « gain de fonction » dans les gênes encodant ENaC, causant ainsi le syndrome de Liddle, une forme sévère d'hypertension sensible au sel. Dans cette maladie, la régulation d'ENaC est compromise du fait des mutations qui supprime ou mute le domaine PY présent sur les sous-unités d'ENaC. Ces mutations préviennent l'ubiquitylation d'ENaC par Nedd4-2, conduisant ainsi à une baisse de l'endocytose du canal et par conséquent une activité accrue d'ENaC à la surface membranaire. Après endocytose, ENaC est envoyé vers le lysosome et rapidement dégradé. Comme d'autres protéines membranaires ubiquitylées et endocytées (comme l'EGFR), il est probable que le complexe multi-protéique ESCRT est impliqué dans le transport d'ENaC au lysosome. Pour étudier l'implication du système d'ESCRT dans la régulation d'ENaC nous avons testé le rôle d'une protéine de ces complexes, TsglOl. Notre étude nous a permis de démontrer que TsglOl se lie aux trois sous-unités ENaC aussi bien en co-transfection dans des cellules HEK-293 que de manière endogène. De plus, nous avons pu démontrer l'importance de l'ubiquitine dans cette interaction par la mutation de toutes les lysines placées du côté cytoplasmique des sous-unités d'ENaC, empêchant ainsi l'ubiquitylation de ces sous-unités. Enfin, le « knockdown » de TsglOl dans des cellules épithéliales de rein induit une augmentation de l'expression d'ENaC aussi bien dans le «pool» total qu'à la surface membranaire, indiquant ainsi un rôle pour TsglOl et par conséquent du système d'ESCRT dans la dégradation d'ENaC par la voie endosome / lysosome. - Le corps humain est composé d'organes chacun spécialisé dans une fonction précise. Chaque organe est composé de cellules, qui assurent la fonction de l'organe en question. Ces cellules se caractérisent par : - une membrane qui leur permet d'isoler leur compartiment interne (milieu intracellulaire ou cytoplasme) du liquide externe (milieu extracellulaire), - un noyau, où l'ADN est situé, - des protéines, sortent d'unités fonctionnelles ayant une fonction bien définie dans la cellule. La séparation entre l'extérieure et l'intérieure de la cellule est essentielle pour le maintien des composants de ces milieux ainsi que pour la bonne fonction de l'organisme et des cellules. Parmi ces composants, le sodium joue un rôle essentiel car il conditionne le maintien de volume sanguin en participant au maintien du volume extracellulaire. Une augmentation du sodium dans l'organisme provoque donc une augmentation du volume sanguin et ainsi provoque une hypertension. De ce fait, le contrôle de la quantité de sodium présente dans l'organisme est essentiel pour le bon fonctionnement de l'organisme. Le sodium est apporté par l'alimentation, et c'est au niveau du rein que va s'effectuer le contrôle de la quantité de sodium qui va être retenue dans l'organisme pour le maintien d'une concentration normale de sodium dans le milieu extracellulaire. Le rein va se charger de réabsorber toutes sortes de solutés nécessaires pour l'organisme avant d'évacuer les déchets ou le surplus de ces solutés en produisant l'urine. Le rein va se charger de réabsorber le sodium grâce à différentes protéines, parmi elle, nous nous sommes intéressés à une protéine appelée ENaC. Cette protéine joue un rôle important dans la réabsorption du sodium, et lorsqu'elle fonctionne mal, comme il a pu être observé dans certaines maladies génétiques, il en résulte des problèmes d'hypo- ou d'hypertension. Les problèmes résultant du mauvais fonctionnement de cette protéine obligent donc la cellule à réguler efficacement ENaC par différents mécanismes, notamment en diminuant son expression et en dégradant le « surplus ». Dans cette travail de thèse, nous nous sommes intéressés au mécanisme impliqué dans la dégradation d'ENaC et plus précisément à un ensemble de protéines, appelé ESCRT, qui va se charger « d'escorter » une protéine vers un sous compartiment à l'intérieur de la cellule ou elle sera dégradée.
Resumo:
State-of-the-art production technologies for conjugate vaccines are complex, multi-step processes. An alternative approach to produce glycoconjugates is based on the bacterial N-linked protein glycosylation system first described in Campylobacter jejuni. The C. jejuni N-glycosylation system has been successfully transferred into Escherichia coli, enabling in vivo production of customized recombinant glycoproteins. However, some antigenic bacterial cell surface polysaccharides, like the Vi antigen of Salmonella enterica serovar Typhi, have not been reported to be accessible to the bacterial oligosaccharyltransferase PglB, hence hamper development of novel conjugate vaccines against typhoid fever. In this report, Vi-like polysaccharide structures that can be transferred by PglB were evaluated as typhoid vaccine components. A polysaccharide fulfilling these requirements was found in Escherichia coli serovar O121. Inactivation of the E. coli O121 O antigen cluster encoded gene wbqG resulted in expression of O polysaccharides reactive with antibodies raised against the Vi antigen. The structure of the recombinantly expressed mutant O polysaccharide was elucidated using a novel HPLC and mass spectrometry based method for purified undecaprenyl pyrophosphate (Und-PP) linked glycans, and the presence of epitopes also found in the Vi antigen was confirmed. The mutant O antigen structure was transferred to acceptor proteins using the bacterial N-glycosylation system, and immunogenicity of the resulting conjugates was evaluated in mice. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with E. coli O121 LPS. One animal developed a significant rise in serum immunoglobulin anti-Vi titer upon immunization.
Resumo:
Alcohol is responsible for a significant portion of the global burden of disease. There is widespread concern reported in the media and other sources about drinking trends among young people, particularly heavy episodic or “binge” drinking. Prominent among policy responses, in the UK and elsewhere, have been attempts to manage antisocial behaviour related to intoxication in public spaces. Much less attention has been given to the longer term effects of excessive drinking in adolescence on later adult health and well-being. Some studies suggest that individuals “mature out” of late adolescent drinking behaviour, whilst others identify enduring effects on drinking and broader health and social outcomes in adulthood. If adolescent drinking does not cause later difficulties in adulthood then intervention approaches aimed at addressing the acute consequences of alcohol, such as unintentional injuries and anti-social behaviour, may be the most appropriate solution. If causal relationships do exist, however, this approach will not address the cumulative harms produced by alcohol, unless such intervention successfully modifies the long-term relationship with alcohol, which seems unlikely. To address this issue a systematic review of cohort studies was conducted, as this approach provides the strongest observational study design to evaluate evidence for causal inference.This resource was contributed by The National Documentation Centre on Drug Use.
Resumo:
Small vessel pathology and microvascular lesions are no longer considered as minor players in the fields of cognitive impairment and mood regulation. Although frequently found in cognitively intact elders, both neuroimaging and neuropathological data revealed the negative impact on cognitive performances of their presence within neocortical association areas, thalamus and basal ganglia. Unlike cognition, the relationship between these lesions and mood dysregulation is still a matter of intense debate. Early studies focusing on the role of macroinfarct location in the occurrence of post-stroke depression (PSD) led to conflicting data. Later on, the concept of vascular depression proposed a deleterious effect of subcortical lacunes and deep white matter demyelination on mood regulation in elders who experienced the first depressive episode. More recently, the chronic accumulation of lacunes in thalamus, basal ganglia and deep white matter has been considered as a strong correlate of PSD. We provide here a critical overview of neuroimaging and neuropathological sets of evidence regarding the affective repercussions of vascular burden in the aging brain and discuss their conceptual and methodological limitations. Based on these observations, we propose that the accumulation of small vascular and microvascular lesions constitutes a common neuropathological platform for both cognitive decline and depressive episodes in old age.
Resumo:
Late-onset asthma is a common disease, with characteristics that differentiate it from childhood asthma persisting in adults, including a heterogeneity of underlying mechanism, a correlation with occupational exposure and the tendency to chronicize. Inadequate perception of the disease importance and difficulties in diagnosis, due to the association to COPD, the broad differential diagnosis spectrum and an atypical clinical manifestation, make this disease entity underdiagnosed and under-treated, with consequences for morbidity and mortality. The treatment of adults with asthma follows the usual guidelines, but must take into account an occasional poor therapeutic response and the risk of side effects in polymorbid patients.
Resumo:
Phlebotomine captures were performed during 2004 in Clorinda, Argentina. Clorinda is located across the branches of the Paraguay river in front of Asunción city, Paraguay. Reports of canine and human visceral leishmaniasis in Asunción have been increasing since 1997, however neither leishmaniasis cases nor sand flies were ever recorded from Clorinda. Light traps were located in migration paths (bridges, port), and peridomestic environments of Clorinda and surrounding localities. Lutzomyia longipalpis was found in Clorinda and Puerto Pilcomayo, first report in a potential visceral leishmaniasis transmission area for Argentina. Active surveillance is required immediately in the localities involved and the surrounding area.
Resumo:
The comprehension of the pathogenesis of Trypanosoma cruzi-elicited myocarditis is crucial to delineate new therapeutic strategies aiming to ameliorate the inflammation that leads to heart dysfunction, without hampering parasite control. The augmented expression of CCL5/RANTES and CCL3/MIP-1alpha, and their receptor CCR5, in the heart of T. cruzi-infected mice suggests a role for CC-chemokines and their receptors in the pathogenesis of T. cruzi-elicited myocarditis. Herein, we discuss our recent results using a CC-chemokine receptor inhibitor (Met-RANTES), showing the participation of CC-chemokines in T. cruzi infection and unraveling CC-chemokine receptors as an attractive therapeutic target for further evaluation in Chagas disease.
Resumo:
The natural lignans veraguensin and grandisin have been reported to be active against Trypanosoma cruzi bloodstream forms. Aiming at the total synthesis of these and related compounds, we prepared three 2-arylfurans and eight 2,5-diarylfurans. They were evaluated for their potential as T. cruzi trypanothione reductase (TR) inhibitors as well against the parasite's intracellular (amastigote) and bloodstream (trypomastigote) forms. Compound 12 was the most effective against TR with an IC50 of 48.5 µM while 7 and 14 were active against amastigotes, inhibiting the parasite development by 60% at 20 µg/ml (59 and 90 µM, respectively). On the other hand, none of the compounds was significantly active against the parasite bloodstream forms even at 250 µg/ml (0.6-1.5 mM).
Resumo:
Tobacco consumption is a global epidemic responsible for a vast burden of disease. With pharmacological properties sought-after by consumers and responsible for addiction issues, nicotine is the main reason of this phenomenon. Accordingly, smokeless tobacco products are of growing popularity in sport owing to potential performance enhancing properties and absence of adverse effects on the respiratory system. Nevertheless, nicotine does not appear on the 2011 World Anti-Doping Agency (WADA) Prohibited List or Monitoring Program by lack of a comprehensive large-scale prevalence survey. Thus, this work describes a one-year monitoring study on urine specimens from professional athletes of different disciplines covering 2010 and 2011. A method for the detection and quantification of nicotine, its major metabolites (cotinine, trans-3-hydroxycotinine, nicotine-N′-oxide and cotinine-N-oxide) and minor tobacco alkaloids (anabasine, anatabine and nornicotine) was developed, relying on ultra-high pressure liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-TQ-MS/MS). A simple and fast dilute-and-shoot sample treatment was performed, followed by hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) operated in positive electrospray ionization (ESI) mode with multiple reaction monitoring (MRM) data acquisition. After method validation, assessing the prevalence of nicotine consumption in sport involved analysis of 2185 urine samples, accounting for 43 different sports. Concentrations distribution of major nicotine metabolites, minor nicotine metabolites and tobacco alkaloids ranged from 10 (LLOQ) to 32,223, 6670 and 538 ng/mL, respectively. Compounds of interest were detected in trace levels in 23.0% of urine specimens, with concentration levels corresponding to an exposure within the last three days for 18.3% of samples. Likewise, hypothesizing conservative concentration limits for active nicotine consumption prior and/or during sport practice (50 ng/mL for nicotine, cotinine and trans-3-hydroxycotinine and 25 ng/mL for nicotine-N′-oxide, cotinine-N-oxide, anabasine, anatabine and nornicotine) revealed a prevalence of 15.3% amongst athletes. While this number may appear lower than the worldwide smoking prevalence of around 25%, focusing the study on selected sports highlighted more alarming findings. Indeed, active nicotine consumption in ice hockey, skiing, biathlon, bobsleigh, skating, football, basketball, volleyball, rugby, American football, wrestling and gymnastics was found to range between 19.0 and 55.6%. Therefore, considering the adverse effects of smoking on the respiratory tract and numerous health threats detrimental to sport practice at top level, likelihood of smokeless tobacco consumption for performance enhancement is greatly supported.
Resumo:
Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.
Resumo:
The pathogenesis of Schistosoma mansoni infection is largely determined by host T-cell mediated immune responses such as the granulomatous response to tissue deposited eggs and subsequent fibrosis. The major egg antigens have a valuable role in desensitizing the CD4+ Th cells that mediate granuloma formation, which may prevent or ameliorate clinical signs of schistosomiasis.S. mansoni major egg antigen Smp40 was expressed and completely purified. It was found that the expressed Smp40 reacts specifically with anti-Smp40 monoclonal antibody in Western blotting. Three-dimensional structure was elucidated based on the similarity of Smp40 with the small heat shock protein coded in the protein database as 1SHS as a template in the molecular modeling. It was figured out that the C-terminal of the Smp40 protein (residues 130 onward) contains two alpha crystallin domains. The fold consists of eight beta strands sandwiched in two sheets forming Greek key. The purified Smp40 was used for in vitro stimulation of peripheral blood mononuclear cells from patients infected with S. mansoni using phytohemagglutinin mitogen as a positive control. The obtained results showed that there is no statistical difference in interferon-g, interleukin (IL)-4 and IL-13 levels obtained with Smp40 stimulation compared with the control group (P > 0.05 for each). On the other hand, there were significant differences after Smp40 stimulation in IL-5 (P = 0.006) and IL-10 levels (P < 0.001) compared with the control group. Gaining the knowledge by reviewing the literature, it was found that the overall pattern of cytokine profile obtained with Smp40 stimulation is reported to be associated with reduced collagen deposition, decreased fibrosis, and granuloma formation inhibition. This may reflect its future prospect as a leading anti-pathology schistosomal vaccine candidate.