952 resultados para kink solutions in finite volume
Resumo:
In this paper, the continuous casting process for steel slab production is modelled using a mult-physics approach. For this purpose, a Finite Volume (FV) numerical model was constructed in 3D, with the following characteristics: Time dependent, turbulent fluid flow and heat transfer in the molten steel and flux regions, solidification of the skin layer, under prescribed heat loss boundary conditions, particle tracking simulation of argon bubbles injected with the metal into the mould, full coupling between bubbles and liquid through buoyancy and interfacial forces using a novel gas accumulation technique, and a full transient simulation of flux-metal interface behaviour under the influence of gravity and fluid inertial forces and bubble plume buoyancy. The unstructure mesh FV code PHYSICA developed at Greenwich was used for carry out the simulations with physical process data and properties supplied by IRSID SA.
Resumo:
In this paper the use of free-surface techniques, within the framework of a finite volume methodology, are investigated for the simulation of metal forming processes. In such processes, for example extrusion and forging, a workpiece is subjected to large scale deformation to create the product's shape. The use of Eulerian free-surface techniques to predict this final shape offers the advantage, over the traditionally used Lagrangian finite element method, of not requiring remmeshing. Two free-surface techniques to predict this final shape offers the advantage, over the traditionally used Lagrangian finite element method, of not requiring remesingh. Two free-surface techniques are compared by modelling a typical example of this type of process - non-Newtonian extrusion of an aluminium workpiece through a conical die.
Resumo:
The computational modelling of extrusion and forging processes is now well established. There are two main approaches: Lagrangian and Eulerian. The first has considerable complexities associated with remeshing, especially when the code is parallelised. The second approach means that the mould has to be assumed to be entirely rigid and this may not be the case. In this paper, a novel approach is described which utilises finite volume methods on unstructured meshes. This approach involves the solution of free surface non-Newtonian fluid flow equations in an Eulerian context to track the behaviour of the workpiece and its extrusion/forging, and the solution of the solid mechanics equations in the Lagrangian context to predict the deformation/stress behaviour of the die. Test cases for modelling extrusion and forging problems using this approach will be presented.
Resumo:
The dynamic process of melting different materials in a cold crucible is being studied experimentally with parallel numerical modelling work. The numerical simulation uses a variety of complementing models: finite volume, integral equation and pseudo-spectral methods combined to achieve the accurate description of the dynamic melting process. Results show the temperature history of the melting process with a comparison of the experimental and computed heat losses in the various parts of the equipment. The free surface visual observations are compared to the numerically predicted surface shapes.
Resumo:
Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. Numerical modelling of dynamic fluid-structure interaction (DFSI) involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge and until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. A single, finite volume unstructured mesh (FV-UM) spatial discretisation method has been employed on a single mesh for the entire domain. The Navier Stokes equations for fluid flow are solved using a SIMPLE type procedure and the Newmark b algorithm is employed for solving the dynamic equilibrium equations for linear elastic solid mechanics and mesh movement is achieved using a spring based mesh procedure for dynamic mesh movement. In the paper we describe a number of additional computation issues for the efficient and accurate modelling of three-dimensional, dynamic fluid-structure interaction problems.
Resumo:
The issues surrounding collision of projectiles with structures has gained a high profile since the events of 11th September 2001. In such collision problems, the projectile penetrates the stucture so that tracking the interface between one material and another becomes very complex, especially if the projectile is essentially a vessel containing a fluid, e.g. fuel load. The subsequent combustion, heat transfer and melting and re-solidification process in the structure render this a very challenging computational modelling problem. The conventional approaches to the analysis of collision processes involves a Lagrangian-Lagrangian contact driven methodology. This approach suffers from a number of disadvantages in its implementation, most of which are associated with the challenges of the contact analysis component of the calculations. This paper describes a 'two fluid' approach to high speed impact between solid structures, where the objective is to overcome the problems of penetration and re-meshing. The work has been carried out using the finite volume, unstructured mesh multi-physics code PHYSICA+, where the three dimensional fluid flow, free surface, heat transfer, combustion, melting and re-solidification algorithms are approximated using cell-centred finite volume, unstructured mesh techniques on a collocated mesh. The basic procedure is illustrated for two cases of Newtonian and non-Newtonian flow to test various of its component capabilities in the analysis of problems of industrial interest.
Resumo:
Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, flow in elastic pipes and blood vessels and extrusion of metals through dies. However a comprehensive computational model of these multi-physics phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply even to the extent in metal forming, for example, that the deformation of the die is totally ignored. More recently, strategies for solving the full coupling between the fluid and soild mechanics behaviour have developed. Conventionally, the computational modelling of fluid structure interaction is problematical since computational fluid dynamics (CFD) is solved using finite volume (FV) methods and computational structural mechanics (CSM) is based entirely on finite element (FE) methods. In the past the concurrent, but rather disparate, development paths for the finite element and finite volume methods have resulted in numerical software tools for CFD and CSM that are different in almost every respect. Hence, progress is frustrated in modelling the emerging multi-physics problem of fluid structure interaction in a consistent manner. Unless the fluid-structure coupling is either one way, very weak or both, transferring and filtering data from one mesh and solution procedure to another may lead to significant problems in computational convergence. Using a novel three phase technique the full interaction between the fluid and the dynamic structural response are represented. The procedure is demonstrated on some challenging applications in complex three dimensional geometries involving aircraft flutter, metal forming and blood flow in arteries.
Computational modeling techniques for reliability of electronic components on printed circuit boards
Resumo:
This paper describes modeling technology and its use in providing data governing the assembly and subsequent reliability of electronic chip components on printed circuit boards (PCBs). Products, such as mobile phones, camcorders, intelligent displays, etc., are changing at a tremendous rate where newer technologies are being applied to satisfy the demands for smaller products with increased functionality. At ever decreasing dimensions, and increasing number of input/output connections, the design of these components, in terms of dimensions and materials used, is playing a key role in determining the reliability of the final assembly. Multiphysics modeling techniques are being adopted to predict a range of interacting physics-based phenomena associated with the manufacturing process. For example, heat transfer, solidification, marangoni fluid flow, void movement, and thermal-stress. The modeling techniques used are based on finite volume methods that are conservative and take advantage of being able to represent the physical domain using an unstructured mesh. These techniques are also used to provide data on thermal induced fatigue which is then mapped into product lifetime predictions.
Resumo:
This paper will discuss Computational Fluid Dynamics (CFD) results from an investigation into the accuracy of several turbulence models to predict air cooling for electronic packages and systems. Also new transitional turbulence models will be proposed with emphasis on hybrid techniques that use the k-ε model at an appropriate distance away from the wall and suitable models, with wall functions, near wall regions. A major proportion of heat emitted from electronic packages can be extracted by air cooling. This flow of air throughout an electronic system and the heat extracted is highly dependent on the nature of turbulence present in the flow. The use of CFD for such investigations is fast becoming a powerful and almost essential tool for the design, development and optimization of engineering applications. However turbulence models remain a key issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the turbulence model employed together with the wall functions implemented. In order to resolve the abrupt fluctuations experienced by the turbulent energy and other parameters located at near wall regions and shear layers a particularly fine computational mesh is necessary which inevitably increases the computer storage and run-time requirements. The PHYSICA Finite Volume code was used for this investigation. With the exception of the k-ε and k-ω models which are available as standard within PHYSICA, all other turbulence models mentioned were implemented via the source code by the authors. The LVEL, LVEL CAP, Wolfshtein, k-ε, k-ω, SST and kε/kl models are described and compared with experimental data.
Resumo:
Computational results for the microwave heating of a porous material are presented in this paper. Combined finite difference time domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent on both temperature and moisture content. The model was able to reflect the evolution of both temperature and moisture fields as well as energy penetration as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.
Resumo:
The ATTMA "Aerosol Transport in the Trans-Manche Atmosphere" project investigates the transportation and dispersion of air pollutants across the English Channel, in collaboration with local authorities and other Universities in Southern England and Northern France. The research is concerned with both forward and inverse (receptor based) tracking. Two alternative dispersion simulation methods are used: (a) Lagrangian Particle Dispersion (LPD) models, (b) Eulerian Finite Volume type models. This paper is concerned with part (a), the simulations based on LPD models. Two widely applied LPD models are used and compared. Since in many observed episodes the source of pollution is traced outside the region of interest, long range, trans-continental transport is also investigated.
Resumo:
The growth of computer power allows the solution of complex problems related to compressible flow, which is an important class of problems in modern day CFD. Over the last 15 years or so, many review works on CFD have been published. This book concerns both mathematical and numerical methods for compressible flow. In particular, it provides a clear cut introduction as well as in depth treatment of modern numerical methods in CFD. This book is organised in two parts. The first part consists of Chapters 1 and 2, and is mainly devoted to theoretical discussions and results. Chapter 1 concerns fundamental physical concepts and theoretical results in gas dynamics. Chapter 2 describes the basic mathematical theory of compressible flow using the inviscid Euler equations and the viscous Navier–Stokes equations. Existence and uniqueness results are also included. The second part consists of modern numerical methods for the Euler and Navier–Stokes equations. Chapter 3 is devoted entirely to the finite volume method for the numerical solution of the Euler equations and covers fundamental concepts such as order of numerical schemes, stability and high-order schemes. The finite volume method is illustrated for 1-D as well as multidimensional Euler equations. Chapter 4 covers the theory of the finite element method and its application to compressible flow. A section is devoted to the combined finite volume–finite element method, and its background theory is also included. Throughout the book numerous examples have been included to demonstrate the numerical methods. The book provides a good insight into the numerical schemes, theoretical analysis, and validation of test problems. It is a very useful reference for applied mathematicians, numerical analysts, and practice engineers. It is also an important reference for postgraduate researchers in the field of scientific computing and CFD.
Resumo:
The problem to be examined here is the fluctuating pressure distribution along the open cavity of the sun-roof at the top of a car compartment due to gusts passing over the sun-roof. The aim of this test is to investigate the capability of a typical commercial CFD package, PHOENICS, in recognising pressure fluctuations occurring in an important automotive industrial problem. In particular to examine the accuracy of transporting pulsatory gusts traveling along the main flow through the use of finite volume methods with higher order schemes in the numercial solutins of the unsteady compressible Navier-Stokes equations. The Helmholtz equation is used to solve the sound distribution inside the car compartment, resulting from the externally induced fluctuations.
Resumo:
Anisotropic conductive films (ACFs) are widely used in the electronic packaging industries because of their fine pitch potential and the assembly process is simpler compared to the soldering process. However, there are still unsolved issues in the volume productions using ACFs. The main reason is that the effects of many factors on the interconnects are not well understood. This work focuses on the performance of ACF-bonded chip-on-flex assemblies subjected to a range of thermal cycling test conditions. Both experimental and three-dimensional finite element computer modelling methods are used. It has been revealed that greater temperature ranges and longer dwell-times give rise to higher stresses in the ACF interconnects. Higher stresses are concentrated along the edges of the chip-ACF interfaces. In the experiments, the results show that higher temperature ranges and prolonged dwell times increase contact resistance values. Close examination of the microstructures along the bond-line through the scanning electron microscope (SEM) indicates that cyclic thermal loads disjoint the conductive particles from the bump of the chip and/or pad of the substrate and this is thought to be related to the increase of the contact resistance value and the failure of the ACF joints.
Resumo:
A novel open waveguide cavity resonator is presented for the combined variable frequency microwave curing of bumps, underfills and encapsulants, as well as the alignment of devices for fast flip-chip assembly, direct chip attach (DCA) or wafer-scale level packaging (WSLP). This technology achieves radio frequency (RF) curing of adhesives used in microelectronics, optoelectronics and medical devices with potential simultaneous micron-scale alignment accuracy and bonding of devices. In principle, the open oven cavity can be fitted directly onto a flip-chip or wafer scale bonder and, as such, will allow for the bonding of devices through localised heating thus reducing the risk to thermally sensitive devices. Variable frequency microwave (VFM) heating and curing of an idealised polymer load is numerically simulated using a multi-physics approach. Electro-magnetic fields within a novel open ended microwave oven developed for use in micro-electronics manufacturing applications are solved using a dedicated Yee scheme finite-difference time-domain (FDTD) solver. Temperature distribution, degree of cure and thermal stresses are analysed using an Unstructured Finite Volume method (UFVM) multi-physics package. The polymer load was meshed for thermophysical analysis, whilst the microwave cavity - encompassing the polymer load - was meshed for microwave irradiation. The two solution domains are linked using a cross mapping routine. The principle of heating using the evanescent fringing fields within the open-end of the cavity is demonstrated. A closed loop feedback routine is established allowing the temperature within a lossy sample to be controlled. A distribution of the temperature within the lossy sample is obtained by using a thermal imaging camera.