911 resultados para international physical distribution
Resumo:
Copper porphyrins have been isolated from deep-sea sediments collected during six legs of the Deep Sea Drilling Project-International Program of Ocean Drilling. These pigments are present in depositional areas receiving high inputs of terrestrially derived oxidized organic matter. Such areas include the Black Sea, the Bay of Biscay, the Blake-Bahama Basin, and slumped Miocene deposits off Cape Bojador on the west coast of Africa.
Resumo:
Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface-water d18O records of Neogloboquadrina pachyderma (left coiled); hence the surface-water d18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 yrs). For the Labrador Sea, sediment core logs contain important information about deep-water current velocities and also reflect the variable input of IRD from different sources as inferred from grain-size analysis, benthic d18O, the relation of density and p-wave velocity, and magnetic susceptibility. For the last glacial, faster deep-water currents which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted for a several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deep-water currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly after, while the abrupt atmospheric temperature rise happened after a larger time lag of >=1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial time scales but decoupling at orbital time scales.
Resumo:
A detailed study of physical properties was made on core samples from Deep Sea Drilling Project Hole 504B. The measured properties are density, porosity, sonic velocity, electrical resistivity, and fluid permeability. Basalts from this young oceanic crust have higher density and sonic velocity than the average DSDP basalts. Porosity (and temperature) dependences of physical properties are given by V = Vo - a-phi; roo = roo-0 exp(E*/RT)phi**-q; k = k0' phi**2q-1; where V is the sonic velocity (km/s), Vo = 6.45 (km/s), a = 0.111 (km/s %), phi is the porosity (%), roo is the electrical resistivity (ohm m), roo-0 = 0.002 (ohm m), E* = 2.7 (Kcal/mol) for fresh basalts, RT has its usual meaning, q = 1.67 ± 0.27, k is the permeability, k0' = (1 to about 10) x 10**-12 (cm**2). Porosity distribution in the crust in this area is estimated by combining the seismic velocity distribution and velocity-porosity relation. Because of the rapid decrease in porosity with depth, resistivity increases and permeability decreases rapidly with depth. The decreasing rate of permeability with increasing depth is approximately given by k(cm**2) = 2 x 10**-10 exp(-z (km)/0.3).
Resumo:
Stable isotope and ice-rafted debris records from three core sites in the mid-latitude North Atlantic (IODP Site U1313, MD01-2446, MD03-2699) are combined with records of ODP Sites 1056/1058 and 980 to reconstruct hydrographic conditions during the middle Pleistocene spanning Marine Isotope Stages (MIS) 9-14 (300-540 ka). Core MD03-2699 is the first high-resolution mid-Brunhes record from the North Atlantic's eastern boundary upwelling system covering the complete MIS 11c interval and MIS 13. The array of sites reflect western and eastern basin boundary current as well as north to south transect sampling of subpolar and transitional water masses and allow the reconstruction of transport pathways in the upper limb of the North Atlantic's circulation. Hydrographic conditions in the surface and deep ocean during peak interglacial MIS 9 and 11 were similar among all the sites with relative stable conditions and confirm prolonged warmth during MIS 11c also for the mid-latitudes. Sea surface temperature (SST) reconstructions further reveal that in the mid-latitude North Atlantic MIS 11c is associated with two plateaus, the younger one of which is slightly warmer. Enhanced subsurface northward heat transport in the eastern boundary current system, especially during early MIS 11c, is denoted by the presence of tropical planktic foraminifer species and raises the question how strongly it impacted the Portuguese upwelling system. Deep water ventilation at the onset of MIS 11c significantly preceded surface water ventilation. Although MIS 13 was generally colder and more variable than the younger interglacials the surface water circulation scheme was the same. The greatest differences between the sites existed during the glacial inceptions and glacials. Then a north - south trending hydrographic front separated the nearshore and offshore waters off Portugal. While offshore waters originated from the North Atlantic Current as indicated by the similarities between the records of IODP Site U1313, ODP Site 980 and MD01-2446, nearshore waters as recorded in core MD03-2699 derived from the Azores Current and thus the subtropical gyre. Except for MIS 12, Azores Current influence seems to be related to eastern boundary system dynamics and not to changes in the Atlantic overturning circulation.
Resumo:
We examined geophysical data from a Multi-Sensor Core Logger (MSCL), a logging device providing continuous measurements of gamma-ray attenuation, p-wave travel time, and magnetic susceptibility on marine sediment cores. In the first part we focused on the gamma-ray system and compared two different calibration methods. From the gamma-ray attenuation, we calculated densities and porosities by incorporating mass weighted attenuation coefficients. The application of an iteration method reduces the error of the density and porosity estimates compared to GRAPE data. In addition, we derived equations to calculate water content and dry bulk density from gamma-ray attenuation measurements. Comparison with physical properties determined on discrete samples revealed a very good correlation of both data sets (r = 0.99). This correlation is valid for sediments from substantially different geological settings (e.g., turbidites, hemipelagic muds, and opal-rich sediments). In the second part we applied our data to marine geological questions. For sediments from the Antarctic Polar Frontal Zone, there is indication that the content of biogenic opal can be assessed using a correlation of density and p-wave velocity. For sediments from the Bengal Fan, the relationship between the MSCL acoustic impedance (the product of density and p-wave velocity) and the grain-size distribution in discrete samples can be used to predict clay and sand/silt ratios for sediment cores from the shelf and upper continental slope.
Resumo:
The paper focuses on studies of snow-pit samples and shallow firn cores taken during the 1995-96 and 1996-97 field seasons at Amundsenisen, Dronning Maud Land, Antarctica. The dating of the firn is based on the artificial tritium distribution in the snow cover and on several reference horizons identified by electrical measurements. The early 1964 through 1965 horizon is marked by the deposition of sulfate released to the atmosphere during the eruption of the Agung volcano in March 1963; this horizon was detected by dielectric profiling and electrical conductivity measurements; the proof by chemical analysis has still to be seen. At the ten investigated sites on Amundsenisen the 1964-65 horizon was identified 4.1-5.7 m below the surface. The accumulation rates on Amundsenisen are 41-91 kg/m**2/a. The cores are up to 100 years old. A relationship between isotope content and the mean air temperature on a regional scale can be based on measurements of firn temperature at 10 m depth at the drilling sites. Between Neumayer station at the coast and Heimefrontfjella, the temperature gradient of the deuterium content is 9.6 per mil/K. South of Heimefrontfjella, on the Amundsenisen plateau, it is only 5.5 per mil/K. Time series of yearly accumulation rates show no significant trend. For the isotope records a significant trend to higher values with gradients of 0.1-0.2 d2H per mil/a can be seen in five of the ten time series.