906 resultados para intermetallic compounds
Resumo:
Cannabinoid compounds have widely been employed because of its medicinal and psychotropic properties. These compounds are isolated from Cannabis sativa (or marijuana) and are used in several medical treatments, such as glaucoma, nausea associated to chemotherapy, pain and many other situations. More recently, its use as appetite stimulant has been indicated in patients with cachexia or AIDS. In this work, the influence of several molecular descriptors on the psychoactivity of 50 cannabinoid compounds is analyzed aiming one obtain a model able to predict the psychoactivity of new cannabinoids. For this purpose, initially, the selection of descriptors was carried out using the Fisher`s weight, the correlation matrix among the calculated variables and principal component analysis. From these analyses, the following descriptors have been considered more relevant: E(LUMO) (energy of the lowest unoccupied molecular orbital), Log P (logarithm of the partition coefficient), VC4 (volume of the substituent at the C4 position) and LP1 (Lovasz-Pelikan index, a molecular branching index). To follow, two neural network models were used to construct a more adequate model for classifying new cannabinoid compounds. The first model employed was multi-layer perceptrons, with algorithm back-propagation, and the second model used was the Kohonen network. The results obtained from both networks were compared and showed that both techniques presented a high percentage of correctness to discriminate psychoactive and psychoinactive compounds. However, the Kohonen network was superior to multi-layer perceptrons.
Resumo:
In the treatment of cyclometallated dimer [Pd(dmba)(mu-Cl)](2) (dmba = N,N-dimethylbenzylamine) with AgNO(3) and acetonitrile the result was the monomeric cationic precursor [Pd(dmba)(NCMe)(2)](NO(3)) (NCMe=acetonitrile) (1). Compound 1 reacted with m-nitroaniline (m-NAN) and pirazine (pz), originating [Pd(dmba)(ONO(2))(m-NAN)] (2) and [{Pd(dmba)(ONO(2))}(2)(mu-pz)] center dot H(2)O (3), respectively. These compounds were characterized by elemental analysis, IR and NMR spectroscopy. The IR spectra of (2-3) display typical bands of monodentade O-bonded nitrate groups, whereas the NMR data of 3 are consistent with the presence of bridging pyrazine ligands. The structure of compound 3 was determined by Xray diffraction analysis. This packing consists of a supramolecular chain formed by hydrogen bonding between the water molecule and nitrato ligands of two consecutive [Pd(2)(dmba)(2)(ONO(2))2(mu-pz)] units. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.
Resumo:
An analytical procedure based on manual dynamic headspace solid-phase microextraction (HS-SPME) method and the conventional extraction method by liquid–liquid extraction (LLE), were compared for their effectiveness in the extraction and quantification of volatile compounds from commercial whiskey samples. Seven extraction solvents covering a wide range of polarities and two SPME fibres coatings, has been evaluated. The highest amounts extracted, were achieved using dichloromethane (CH2Cl2) by LLE method (LLECH2Cl2)(LLECH2Cl2) and using a CAR/PDMS fibre (SPMECAR/PDMS) in HS-SPME. Each method was used to determine the responses of 25 analytes from whiskeys and calibration standards, in order to provide sensitivity comparisons between the two methods. Calibration curves were established in a synthetic whiskey and linear correlation coefficient (r ) were greater than 0.9929 for LLECH2Cl2LLECH2Cl2 and 0.9935 for SPMECAR/PDMS, for all target compounds. Recoveries greater than 80% were achieved. For most compounds, precision (expressed by relative standard deviation, R.S.D.) are very good, with R.S.D. values lower than 14.78% for HS-SPME method and than 19.42% for LLE method. The detection limits ranged from 0.13 to 19.03 μg L−1 for SPME procedure and from 0.50 to 12.48 μg L−1 for LLE. A tentative study to estimate the contribution of a specific compound to the aroma of a whiskey, on the basis of their odour activity values (OAV) was made. Ethyl octanoate followed by isoamyl acetate and isobutyl alcohol, were found the most potent odour-active compounds.
Resumo:
A method for the simultaneous determination of major and minor volatiles composition in different types (dry, medium dry, sweet and medium sweet) of a young Tinta Negra Mole (TNM) monovarietal red wine from 2003 harvest has been validated. Wine samples preparation includes a dichloromethane liquid–liquid extraction followed by concentration under a nitrogen atmosphere. The extracted fraction was analysed by gas chromatography–mass spectrometry and give quantitative information for more than 86 analytes whose concentration range from few μg l−1 to 259.1 mg l−1. The method enables high recovery of volatile compounds in wine good linearity with (r2) values higher than 0.980 and good sensitivity. The limits of detection range from 0.003 to 0.534 mg l−1 and limits of quantification from 0.009 to 1.170 mg l−1. The method allows satisfactory determination of more than 80 compounds in the TNM red wines. These wines are characterized by a high content of higher alcohols, ethyl esters, fatty acids and lactones. The levels of sulphur compounds in Tinta Negra Mole medium sweet wines are very low, but they have the highest concentration of carbonyl compounds. Quantitative analysis of the main odorants followed by the determination of aroma index allow us elucidate the aroma of these varieties. On the basis of their odour description and odour threshold, the most powerful odorants of Tinta Negra Mole wines were tentatively established.
Resumo:
Boal, Malvasia, Sercial and Verdelho are the main white grape varieties used in Madeira wine production. To estimate the free fraction of varietal aroma compounds of these varieties, 39 samples of musts were analysed to determine their content of monoterpenols and C13 norisoprenoids (terpenoids), using dynamic headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry. The r-values for linearity studies of the analytical method used, varied between 0.977 (nerolidol) and 0.999 (linalool). The repeatability for each compound varied between 2.5% (citronellol) and 11.8% (β-ionone). The mean values from three vintages (1998, 1999 and 2000) confirmed that these musts have differentiated contents of terpenoids. In opposition to Verdelho musts, Malvasia showed the highest free terpenoids content. In order to establish relations between the compounds and the varieties under investigation, principal component analysis and linear discriminant analysis were applied to the data, revealing a good separation and classification power between the four groups as a function of varietal origin.
Resumo:
A headspace solid-phase microextraction (HS-SPME) procedure based on five commercialised fibres (85 μm polyacrylate – PA, 100 μm polydimethylsiloxane – PDMS, 65 μm polydimethylsiloxane/divinylbenzene – PDMS/DVB, 70 μm carbowax/divinylbenzene – CW/DVB and 85 μm carboxen/polydimethylsiloxane – CAR/PDMS) is presented for the characterization of the volatile metabolite profile of four selected Madeira island fruit species, lemon (Citrus limon), kiwi (Actinidia deliciosa), papaya (Carica papaya L.) and Chickasaw plum (Prunus angustifolia). The isolation of metabolites was followed by thermal desorption gas chromatography–quadrupole mass spectrometry (GC–qMS) methodology. The performance of the target fibres was evaluated and compared. The SPME fibre coated with CW/DVB afforded the highest extraction efficiency in kiwi and papaya pulps, while in lemon and plum the same was achieved with PMDS/DVB fibre. This procedure allowed for the identification of 80 compounds, 41 in kiwi, 24 in plums, 23 in papaya and 20 in lemon. Considering the best extraction conditions, the most abundant volatiles identified in kiwi were the intense aldehydes and ethyl esters such as (E)-2-hexenal and ethyl butyrate, while in Chicasaw plum predominate 2-hexenal, 2-methyl-4-pentenal, hexanal, (Z)-3-hexenol and cyclohexylene oxide. The major compounds identified in the papaya pulp were benzyl isothiocyanate, linalool oxide, furfural, hydroxypropanone, linalool and acetic acid. Finally, lemon was shown to be the most divergent of the four fruits, being its aroma profile composed almost exclusively by terpens, namely limonene, γ-terpinene, o-cymene and α-terpinolene. Thirty two volatiles were identified for the first time in the fruit or close related species analysed and 14 volatiles are reported as novel volatile metabolites in fruits. This includes 5 new compounds in kiwi (2-cyclohexene-1,4-dione, furyl hydroxymethyl ketone, 4-hydroxydihydro-2(3H)-furanone, 5-acetoxymethyl-2-furaldehyde and ethanedioic acid), 4 in plum (4-hydroxydihydro-2(3H)-furanone, 5-methyl-2-pyrazinylmethanol, cyclohexylene oxide and 1-methylcyclohexene), 4 in papaya (octaethyleneglycol, 1,2-cyclopentanedione, 3-methyl-1,2-cyclopentanedione and 2-furyl methyl ketone) and 2 in lemon (geranyl farnesate and safranal). It is noteworthy that among the 15 volatile metabolites identified in papaya, 3-methyl-1,2-cyclopentanedione was previously described as a novel PPARγ (peroxisome proliferator-activated receptor γ) agonist, having a potential to minimize inflammation.
Resumo:
This study represents the first phytochemical research of phenolic components of Sercial and Tinta Negra Vitis vinifera L. The phenolic profiles of Sercial and Tinta Negra V. vinifera L. grape skins (white and red varieties, respectively) were established using high performance liquid chromatography–diode array detection–electrospray ionisation tandem mass spectrometry (HPLC–DAD–ESI-MSn), at different ripening stages (véraison and maturity). A total of 40 phenolic compounds were identified, which included 3 hydroxybenzoic acids, 8 hydroxycinnamic acids, 4 flavanols, 5 flavanones, 8 flavonols, 4 stilbenes, and 8 anthocyanins. For the white variety, in both ripening stages, hydroxycinnamic acids and flavonols were the main phenolic classes, representing about 80% of the phenolic composition. For red variety, at véraison, hydroxycinnamic acids and flavonols were also the predominant classes (71%), but at maturity, anthocyanins represented 84% of the phenolic composition. As far as we know, 10 compounds were reported for the first time in V. vinifera L. grapes, namely protocatechuic acid-glucoside, p-hydroxybenzoyl glucoside, caftaric acid vanilloyl pentoside, p-coumaric acid-erythroside, naringenin hexose derivate, eriodictyol-glucoside, taxifolin-pentoside, quercetin-glucuronide-glucoside, malylated kaempferol-glucoside, and resveratrol dimer. These novel V. vinifera L. grape components were identified based on their MSn fragmentation profile. This data represents valuable information that may be useful to oenological management and to valorise these varieties as sources of bioactive compounds.
Resumo:
Stir bar sorptive extraction and liquid desorption followed by large volume injection coupled to gas chromatography–quadrupole mass spectrometry (SBSE–LD/LVI-GC–qMS) had been applied for the determination of volatiles in wines. The methodology was optimised in terms of extraction time and influence of ethanol in the matrix; LD conditions, and instrumental settings. The optimisation was carried out by using 10 standards representative of the main chemical families of wine, i.e. guaiazulene, E,E-farnesol, β-ionone, geranylacetone, ethyl decanoate, β-citronellol, 2-phenylethanol, linalool, hexyl acetate and hexanol. The methodology shows good linearity over the concentration range tested, with correlation coefficients higher than 0.9821, a good reproducibility was attained (8.9–17.8%), and low detection limits were achieved for nine volatile compounds (0.05–9.09 μg L−1), with the exception of 2-phenylethanol due to low recovery by SBSE. The analytical ability of the SBSE–LD/LVI-GC–qMS methodology was tested in real matrices, such as sparkling and table wines using analytical curves prepared by using the 10 standards where each one was applied to quantify the structurally related compounds. This methodology allowed, in a single run, the quantification of 67 wine volatiles at levels lower than their respective olfactory thresholds. The proposed methodology demonstrated to be easy to work-up, reliable, sensitive and with low sample requirement to monitor the volatile fraction of wine.
Resumo:
Microalgae are promising microorganisms for the production of food and fine chemicals. Several species of microalgae are used in aquaculture with the purpose of transfer bioactive compounds up to the aquatic food chain. The main objective of this project was to develop a stress–inducement strategy in order to enhance the biochemical productivity of Nannochloropsis gaditana, Rhodomonas marina and Isochrysis sp. for aquaculture purposes having in account their growth and organizational differences. In this regard, two experiments were design: the first one consisted on the alteration of overall nutrient availabilities in growth medium; and the second one comprised changes in nitrogen and sulfur concentrations maintaining the concentrations of the other nutrients present in a commercial growth medium (Nutribloom plus), which is frequently used in aquaculture. Microalgae dried biomass was characterized biochemically and elemental analysis was also performed for all samples. In first experimental design: linear trends between nutrient availability in growth media and microalgae protein content were obtained; optimum productivities of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) were attained for both R. marina and N. gaditana in growth media enriched with 1000 L L-1 of nutrient solution whereas for Isochrysis sp. the double of Nutribloom plus was needed; the decrease of glucans and total monosaccharides with nutrient availability for R. marina and Isochrysis sp. showed the occurrence of a possible depletion of carbohydrates towards lipids and proteins biosynthesis. Second experimental desing: N. gaditana exhibited the highest variation in their biochemical composition against the applied perturbation; variations observed for microalgae in their biochemical composition were reflected in their elemental stoichiometry; in N. gaditana the highest nitrogen concentrations lead to overall maximum productivities of the biochemical parameters. The results of the present work show two stress-inducement strategies for microalgae that may constitute a base for further investigations on their biochemical enhancement.
Resumo:
Species of Baccharis exhibit antibiotic, antiseptic, wound-healing, and anti-protozoal properties, and have been used in the traditional medicine of South America for the treatment of several diseases. In the present work, the fractionation of EtOH extract from aerial parts of Baccharis uncinella indicated that the isolated compounds caffeic acid and pectolinaringenin showed inhibitory activity against Leishmania (L.) amazonensis and Leishmania (V.) braziliensis promastigotes, respectively. Moreover, amastigote forms of both species were highly sensible to the fraction composed by oleanolic + ursolic acids and pectolinaringenin. Caffeic acid also inhibited amastigote forms of L. (L.) amazonensis, but this effect was weak in L. (V.) braziliensis amastigotes. The treatment of infected macrophages with these compounds did not alter the levels of nitrates, indicating a direct effect of the compounds on amastigote stages. The results presented herein suggest that the active components from B. uncinella can be important to the design of new drugs against American tegumentar leishmaniases.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Two experiments were carried out to evaluate the effect of supplementation with different nitrogenous compounds on the activities of carboxymethil cellulase (CMCase) and glutamate dehydrogenase (GDH). In the first experiment, four treatments were evaluated in vitro: cellulose, cellulose with casein, cellulose with urea, and cellulose with casamino acids. After 6, 12 and 24 hours of incubation, CMCase and GDH activity, pH, and concentrations of ammonia nitrogen (AN) and microbial protein were measured. In the three incubation periods, the concentration of AN was higher when urea was used as a supplemental source of nitrogen. The activity of CMCase was higher with the addition of urea and casamino acids when compared with the control and the casein treatment. Supplementation with casamino acids provided higher GDH activity when compared with the control at 6 hours of incubation. At 12 hours of incubation, the GHD activity was also stimulated by casein. At 24 hours, there was no difference in GHD activity among treatments. In the second experiment, three rumen-fistulated bulls were used for in situ evaluation. Animals were fed Tifton hay (Cynodon sp.) ad libitum. The treatments consisted of control (no supplementation), supplementation with non-protein nitrogenous compounds (urea and ammonium sulphate, 9:1) and supplementation with protein (albumin). In treatments with nitrogenous compound supplementation, 1 g of crude protein/kg of body weight was supplied. The experiment was conducted in a 3 × 3 Latin square design. The measurements were performed at 6, 12 and 24 hours after supplementation. No difference in GDH activity was observed among treatments. The control treatment showed higher CMCase activity when compared with the treatments containing supplemental sources of nitrogen. However, urea supplementation provided higher CMCase activity compared to albumin.
Resumo:
O objetivo deste trabalho foi avaliar o efeito de compostos orgânicos de extratos de plantas de seis espécies e da fertilização fosfatada na disponibilidade de fósforo no solo. Tubos de 30 cm de altura e 5 cm de diâmetro foram preenchidos com Latossolo Vermelho-Amarelo. Cada tubo constituiu uma parcela, em delineamento completamente casualizado, em arranjo fatorial 7x2, com quatro repetições. Extratos líquidos de aveia-preta (Avena strigosa), nabo forrageiro (Raphanus sativus), milho (Zea mays), milheto (Pennisetum glaucum), soja (Glycine max), sorgo forrageiro (Sorghum bicolor) e água (testemunha) foram aplicados em cada parcela, com ou sem fertilização com fosfato solúvel. Após sete dias de incubação, amostras de solo foram coletadas em várias profundidades, e foram analisadas as formas lábil, moderadamente lábil e não lábil de fósforo no solo. Houve acúmulo de fósforo inorgânico nas frações lábil e moderadamente lábil do solo, como conseqüência da adição dos extratos de plantas, principalmente na camada superficial (0-5 cm). O nabo forrageiro, com maior concentração de ácido málico e maior conteúdo de P no tecido do que outras espécies, foi o mais eficiente em incrementar a disponibilidade de P no solo.