997 resultados para integrity verification technique
Resumo:
A simple and practical technique for assessing the risks, that is, the potential for error, and consequent loss, in software system development, acquired during a requirements engineering phase is described. The technique uses a goal-based requirements analysis as a framework to identify and rate a set of key issues in order to arrive at estimates of the feasibility and adequacy of the requirements. The technique is illustrated and how it has been applied to a real systems development project is shown. How problems in this project could have been identified earlier is shown, thereby avoiding costly additional work and unhappy users.
Resumo:
This paper presents a clocking pipeline technique referred to as a single-pulse pipeline (PP-Pipeline) and applies it to the problem of mapping pipelined circuits to a Field Programmable Gate Array (FPGA). A PP-pipeline replicates the operation of asynchronous micropipelined control mechanisms using synchronous-orientated logic resources commonly found in FPGA devices. Consequently, circuits with an asynchronous-like pipeline operation can be efficiently synthesized using a synchronous design methodology. The technique can be extended to include data-completion circuitry to take advantage of variable data-completion processing time in synchronous pipelined designs. It is also shown that the PP-pipeline reduces the clock tree power consumption of pipelined circuits. These potential applications are demonstrated by post-synthesis simulation of FPGA circuits. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Using the classical Parzen window (PW) estimate as the desired response, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density (SKD) estimates. The proposed algorithm incrementally minimises a leave-one-out test score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights of the selected sparse model are finally updated using the multiplicative nonnegative quadratic programming algorithm, which ensures the nonnegative and unity constraints for the kernel weights and has the desired ability to reduce the model size further. Except for the kernel width, the proposed method has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Several examples demonstrate the ability of this simple regression-based approach to effectively construct a SKID estimate with comparable accuracy to that of the full-sample optimised PW density estimate. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Tremor is a clinical feature characterized by oscillations of a part of the body. The detection and study of tremor is an important step in investigations seeking to explain underlying control strategies of the central nervous system under natural (or physiological) and pathological conditions. It is well established that tremorous activity is composed of deterministic and stochastic components. For this reason, the use of digital signal processing techniques (DSP) which take into account the nonlinearity and nonstationarity of such signals may bring new information into the signal analysis which is often obscured by traditional linear techniques (e.g. Fourier analysis). In this context, this paper introduces the application of the empirical mode decomposition (EMD) and Hilbert spectrum (HS), which are relatively new DSP techniques for the analysis of nonlinear and nonstationary time-series, for the study of tremor. Our results, obtained from the analysis of experimental signals collected from 31 patients with different neurological conditions, showed that the EMD could automatically decompose acquired signals into basic components, called intrinsic mode functions (IMFs), representing tremorous and voluntary activity. The identification of a physical meaning for IMFs in the context of tremor analysis suggests an alternative and new way of detecting tremorous activity. These results may be relevant for those applications requiring automatic detection of tremor. Furthermore, the energy of IMFs was visualized as a function of time and frequency by means of the HS. This analysis showed that the variation of energy of tremorous and voluntary activity could be distinguished and characterized on the HS. Such results may be relevant for those applications aiming to identify neurological disorders. In general, both the HS and EMD demonstrated to be very useful to perform objective analysis of any kind of tremor and can therefore be potentially used to perform functional assessment.
Resumo:
It's a fact that functional verification (FV) is paramount within the hardware's design cycle. With so many new techniques available today to help with FV, which techniques should we really use? The answer is not straightforward and is often confusing and costly. The tools and techniques to be used in a project have to be decided upon early in the design cycle to get the best value for these new verification methods. This paper gives a quick survey in the form of an overview on FV, establishes the difference between verification and validation, describes the bottlenecks that appear in the verification process, examines the challenges in FV and exposes the current FV technologies and trends.
Resumo:
We describe a high-level design method to synthesize multi-phase regular arrays. The method is based on deriving component designs using classical regular (or systolic) array synthesis techniques and composing these separately evolved component design into a unified global design. Similarity transformations ar e applied to component designs in the composition stage in order to align data ow between the phases of the computations. Three transformations are considered: rotation, re ection and translation. The technique is aimed at the design of hardware components for high-throughput embedded systems applications and we demonstrate this by deriving a multi-phase regular array for the 2-D DCT algorithm which is widely used in many vide ocommunications applications.
Resumo:
Cloud radar and lidar can be used to evaluate the skill of numerical weather prediction models in forecasting the timing and placement of clouds, but care must be taken in choosing the appropriate metric of skill to use due to the non- Gaussian nature of cloud-fraction distributions. We compare the properties of a number of different verification measures and conclude that of existing measures the Log of Odds Ratio is the most suitable for cloud fraction. We also propose a new measure, the Symmetric Extreme Dependency Score, which has very attractive properties, being equitable (for large samples), difficult to hedge and independent of the frequency of occurrence of the quantity being verified. We then use data from five European ground-based sites and seven forecast models, processed using the ‘Cloudnet’ analysis system, to investigate the dependence of forecast skill on cloud fraction threshold (for binary skill scores), height, horizontal scale and (for the Met Office and German Weather Service models) forecast lead time. The models are found to be least skillful at predicting the timing and placement of boundary-layer clouds and most skilful at predicting mid-level clouds, although in the latter case they tend to underestimate mean cloud fraction when cloud is present. It is found that skill decreases approximately inverse-exponentially with forecast lead time, enabling a forecast ‘half-life’ to be estimated. When considering the skill of instantaneous model snapshots, we find typical values ranging between 2.5 and 4.5 days. Copyright c 2009 Royal Meteorological Society
Resumo:
A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance.
Resumo:
The HIRDLS instrument contains 21 spectral channels spanning a wavelength range from 6 to 18mm. For each of these channels the spectral bandwidth and position are isolated by an interference bandpass filter at 301K placed at an intermediate focal plane of the instrument. A second filter cooled to 65K positioned at the same wavelength but designed with a wider bandwidth is placed directly in front of each cooled detector element to reduce stray radiation from internally reflected in-band signals, and to improve the out-of-band blocking. This paper describes the process of determining the spectral requirements for the two bandpass filters and the antireflection coatings used on the lenses and dewar window of the instrument. This process uses a system throughput performance approach taking the instrument spectral specification as a target. It takes into account the spectral characteristics of the transmissive optical materials, the relative spectral response of the detectors, thermal emission from the instrument, and the predicted atmospheric signal to determine the radiance profile for each channel. Using this design approach an optimal design for the filters can be achieved, minimising the number of layers to improve the in-band transmission and to aid manufacture. The use of this design method also permits the instrument spectral performance to be verified using the measured response from manufactured components. The spectral calculations for an example channel are discussed, together with the spreadsheet calculation method. All the contributions made by the spectrally active components to the resulting instrument channel throughput are identified and presented.