1000 resultados para instance-dependent


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Methylenetetrahydrofolate reductase (MTHFR; EC 1.7.99.5) supplies the folate needed for the metabolism of homocysteine. A reduction in MTHFR activity, as occurs in the homozygous state for the 677C-->T (so-called thermolabile) enzyme variant (TT genotype), is associated with an increase in plasma total homocysteine (tHcy). OBJECTIVE: In vitro studies suggest that the reduced activity of thermolabile MTHFR is due to the inappropriate loss of its riboflavin cofactor. We investigated the hypothesis that MTHFR activity in the TT genotype group is particularly sensitive to riboflavin status. DESIGN: We studied tHcy and relevant B-vitamin status by MTHFR genotype in a cross-sectional study of 286 healthy subjects aged 19-63 y (median: 27 y). The effect of riboflavin status was examined by dividing the sample into tertiles of erythrocyte glutathionine reductase activation coefficient, a functional index of riboflavin status. RESULTS: Lower red blood cell folate (P = 0.0001) and higher tHcy (P = 0.0082) concentrations were found in the TT group than in the heterozygous (CT) or wild-type (CC) groups. However, these expected relations in the total sample were driven by the TT group with the lowest riboflavin status, whose mean tHcy concentration (18.09 micromol/L) was almost twice that of the CC or CT group. By contrast, adequate riboflavin status rendered the TT group neutral with respect to tHcy metabolism. CONCLUSIONS: The high tHcy concentration typically associated with homozygosity for the 677C-->T variant of MTHFR occurs only with poor riboflavin status. This may have important implications for governments considering new fortification policies aimed at the prevention of diseases for which this genotype is associated with increased risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelin-1 (ET-1) has been implicated in the pathogenesis of renal inflammation. This study investigated the mechanisms underlying the synergistic upregulation of preproET-1 gene expression in human mesangial cells after co-stimulation with thrombin and tumor necrosis factor alpha (TNFalpha). Whereas thrombin induced a moderate upregulation of preproET-1 mRNA, co-stimulation with TNFalpha resulted in a strong and protracted upregulation of this mRNA species. Thrombin+TNFalpha-induced upregulation of preproET-1 expression was found to require p38 mitogen-activated protein kinase and protein kinases C, whereas activation of extracellular signal-regulated kinase, c-Jun-N-terminal kinase, or intracellular Ca(2+) release were not required. Actinomycin D chase experiments suggested that enhanced stability of preproET-1 mRNA did not account for the increase in transcript levels. PreproET-1 promoter analysis demonstrated that the 5'-flanking region of preproET-1 encompassed positive regulatory elements engaged by thrombin. Negative modulation of thrombin-induced activation exerted by the distal 5' portion of preproET-1 promoter (-4.4 kbp to 204 bp) was overcome by co-stimulation with TNFalpha, providing a possible mechanism underlying the synergistic upregulation of preproET-1 expression by these two agonists. In conclusion, human mesangial cell expression of preproET-1 may be increased potently in the presence of two common proinflammatory mediators, thereby providing a potential mechanism for ET-1 production in inflammatory renal disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three novel dinucleotide analogues of nicotinamide adenine dinucleotide (NAD+) have been synthesised from -ribonolactone. These compounds incorporate a thiophene moiety in place of nicotinamide and are hydrolytically stable. They have been evaluated as inhibitors of adenosine diphosphate ribosyl cyclase, glutamate dehydrogenase and Sir2 acyltransferase activities. Enzyme specificity and a high level of inhibition was observed for the dehydrogenase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Negative-strand RNA viruses encode a single RNA-dependent RNA polymerase (RdRp) which transcribes and replicates the genome. The open reading frame encoding the RdRp from a virulent wild-type strain of rinderpest virus (RPV) was inserted into an expression plasmid. Sequences encoding enhanced green fluorescent protein (EGFP) were inserted into a variable hinge of the RdRp. The resulting polymerase was autofluorescent, and its activity in the replication/transcription of a synthetic minigenome was reduced. We investigated the potential of using this approach to rationally attenuate a virus by inserting the DNA sequences encoding the modified RdRp into a full-length anti-genome plasmid from which a virulent virus (rRPV(KO)) can be rescued. A recombinant virus, rRPV(KO)L-RRegfpR, which grew at an indistinguishable rate and to an identical titer as rRPV(KO) in vitro, was rescued. Fluorescently tagged polymerase was visible in large cytoplasmic inclusions and beneath the cell membrane. Subcutaneous injection of 10(4) TCID(50) of the rRPV(KO) parental recombinant virus into cattle leads to severe disease symptoms (leukopenia/diarrhea and pyrexia) and death by 9 days postinfection. Animals infected with rRPV(KO)L-RRegfpR exhibited transient leukopenia and mild pyrexia, and the only noticeable clinical signs were moderate reddening of one eye and a slight ocular-nasal discharge. Viruses that expressed the modified polymerase were isolated from peripheral blood lymphocytes and eye swabs. This demonstrates that a virulent morbillivirus can be attenuated in a single step solely by modulating RdRp activity and that there is not necessarily a correlation between virus growth in vitro and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FcRI activation of mast cells is thought to involve Lyn and Syk kinases proximal to the receptor and the signaling complex organized by the linker for activation of T cells (LAT). We report here that FcRI also uses a Fyn kinase-dependent pathway that does not require Lyn kinase or the adapter LAT for its initiation, but is necessary for mast cell degranulation. Lyn-deficiency enhanced Fyn-dependent signals and degranulation, but inhibited the calcium response. Fyn-deficiency impaired degranulation, whereas Lyn-mediated signaling and calcium was normal. Thus, FcRI-dependent mast cell degranulation involves cross-talk between Fyn and Lyn kinases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypoxia-inducible factor (HIF) transcription complex, which is activated by low oxygen tension, controls a diverse range of cellular processes including angiogenesis and erythropoiesis. Under normoxic conditions, the alpha subunit of HIF is rapidly degraded in a manner dependent on hydroxylation of two conserved proline residues at positions 402 and 564 in HIF-1alpha in the oxygen-dependent degradation (ODD) domain. This allows subsequent recognition by the von Hippel-Lindau (VHL) tumor suppressor protein, which targets HIF for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, prolyl hydroxylation of HIF is inhibited, allowing it to escape VHL-mediated degradation. The transcriptional regulation of the erythropoietin gene by HIF raises the possibility that HIF may play a role in disorders of erythropoiesis, such as idiopathic erythrocytosis (IE).