908 resultados para information flow
Resumo:
Privacy has become one of the main impediments for e-health in its advancement to providing better services to its consumers. Even though many security protocols are being developed to protect information from being compromised, privacy is still a major issue in healthcare where privacy protection is very important. When consumers are confident that their sensitive information is safe from being compromised, their trust in these services will be higher and would lead to better adoption of these systems. In this paper we propose a solution to the problem of patient privacy in e-health through an information accountability framework could enhance consumer trust in e-health services and would lead to the success of e-health services.
Resumo:
There has been an increasing interest by governments worldwide in the potential benefits of open access to public sector information (PSI). However, an important question remains: can a government incur tortious liability for incorrect information released online under an open content licence? This paper argues that the release of PSI online for free under an open content licence, specifically a Creative Commons licence, is within the bounds of an acceptable level of risk to government, especially where users are informed of the limitations of the data and appropriate information management policies and principles are in place to ensure accountability for data quality and accuracy.
Resumo:
This article presents the results of a study on the association between measured air pollutants and the respiratory health of resident women and children in Lao PDR, one of the least developed countries in Southeast Asia. The study, commissioned by the World Health Organisation, included PM10, CO and NO2 measurements made inside 181 dwellings in nine districts within two provinces in Lao PDR over a 5- month period (12/05–04/06), and respiratory health information (via questionnaires and peak expiratory flow rate (PEFR) measurements) for all residents in the same dwellings. Adjusted odds ratios were calculated separately for each health outcome using binary logistic regression. There was a strong and consistent positive association between NO2 and CO for almost all questionnaire-based health outcomes for both women and children. Women in dwellings with higher measured NO2 had more than triple of the odds of almost all of the health outcomes, and higher concentrations of NO2 and CO were significantly associated with lower PEFR. This study supports a growing literature confirming the role of indoor air pollution in the burden of respiratory disease in developing countries. The results will directly support changes in health and housing policy in Lao PDR.
Resumo:
As the need for concepts such as cancellation and OR-joins occurs naturally in business scenarios, comprehensive support in a workflow language is desirable. However, there is a clear trade-off between the expressive power of a language (i.e., introducing complex constructs such as cancellation and OR-joins) and ease of verification. When a workflow contains a large number of tasks and involves complex control flow dependencies, verification can take too much time or it may even be impossible. There are a number of different approaches to deal with this complexity. Reducing the size of the workflow, while preserving its essential properties with respect to a particular analysis problem, is one such approach. In this paper, we present a set of reduction rules for workflows with cancellation regions and OR-joins and demonstrate how they can be used to improve the efficiency of verification. Our results are presented in the context of the YAWL workflow language.
Resumo:
As a model for knowledge description and formalization, ontologies are widely used to represent user profiles in personalized web information gathering. However, when representing user profiles, many models have utilized only knowledge from either a global knowledge base or a user local information. In this paper, a personalized ontology model is proposed for knowledge representation and reasoning over user profiles. This model learns ontological user profiles from both a world knowledge base and user local instance repositories. The ontology model is evaluated by comparing it against benchmark models in web information gathering. The results show that this ontology model is successful.