925 resultados para incompleteness and inconsistency detection
Resumo:
Im Rahmen dieser Arbeit wurde ein neuartiger Experimentaufbau -- das γ3 Experiment -- zur Messung von photoneninduzierten Kern-Dipolanregungen in stabilen Isotopen konzipiert und an der High Intensity γ-Ray Source (HIγS) an der Duke University installiert.rnDie hohe Energieauflösung und die hohe Nachweiseffizienz des Detektoraufbaus, welcher aus einer Kombination von LaBr Szintillatoren und hochreinen Germanium-Detektoren besteht, erlaubt erstmals die effiziente Messung von γ-γ-Koinzidenzen in Verbindung mit der Methode der Kernresonanzfluoreszenz.rnDiese Methode eröffnet den Zugang zum Zerfallsverhalten der angeregten Dipolzustände als zusätzlicher Observablen, die ein detaillierteres Verständnis der zugrunde liegenden Struktur dieser Anregungen ermöglicht.rnDer Detektoraufbau wurde bereits erfolgreich im Rahmen von zwei Experimentkampagnen in 2012 und 2013 für die Untersuchung von 13 verschiedenen Isotopen verwendet. Im Fokus dieser Arbeit stand die Analyse der Pygmy-Dipolresonanz (PDR) im Kern 140Ce im Energiebereich von 5,2 MeV bis 8,3 MeV basierend auf den mit dem γ3 Experimentaufbau gemessenen Daten. Insbesondere das Zerfallsverhalten der Zustände, die an der PDR beteiligt sind, wurde untersucht. Der Experimentaufbau, die Details der Analyse sowie die Resultate werden in der vorliegenden Arbeit präsentiert. Desweiteren erlaubt ein Vergleich der Ergebnisse mit theoretischen Rechnungen im quasi-particle phonon model (QPM) eine Interpretation des beobachteten Zerfallsverhaltens.
Resumo:
Der Spin Seebeck Effekt repräsentiert einen neuartigen Spin kalorischen Effekt mit vorteilhaften und aussichtsreichen Eigenschaften für Anwendungen in den Gebieten der Spintronik und Thermoelektrik.rnIn dieser Arbeit präsentieren wir eine umfangreiche Untersuchung des Spin Seebeck Effekts in isolierenden, magnetischen Granaten und geben Antworten zum kontrovers diskutierten Ursprung des Effekts. Um dieses Ziel zu erreichen, haben wir die Abhängigkeit des Spin Seebeck Effekts von der Dicke des Ferromagneten, der Temperatur, der Stärke des magnetisches Feldes, der Grenzflächen und des Detektormaterials, sowie Kombinationen dieser Parameter gemessen. Im Zuge dessen haben wir das Wachstum der untersuchten magnetischen Granate optimiert und eine umfassende Analyse der strukturellen und magnetischen Parameter durchgeführt, um Einflüsse der Probenqualität auszuschließen. Des Weiteren zeigte eine Untersuchung des magnetoresistiven Effekts, welcher als mögliche Ursache des Effekts galt, in Kombination mit einer Studie des Messaufbaus, dass parasitäre Einflüsse auf das Messergebnis ausgeschlossen werden können. Unsere Ergebnisse zeigen, dass der Spin Seebeck Effekt mit zunehmender Dicke des Ferromagneten eine Sättigung des Signals aufweist. Diese hängt zudem von der Temperatur ab, da mit abnehmender Temperatur die Sättigung erst bei dickeren Filmen auftritt. Außerdem fanden unsere Messungen ein Maximum des Spin Seebeck Effekts für Temperaturen unterhalb der Raumtemperatur, welcher sowohl von der Dicke des Materials als auch der Magnetfeldstärke und dem Detektormaterial beeinflusst wird. In Messungen bei hohen magnetischen Feldstärken beobachteten wir eine Unterdrückung des Messsignals, dessen Ursache mithilfe von Simulationen auf den magnonischen Ursprung des Spin Seebeck Effekts zurückgeführt werden kann. Dies unterstreicht, dass der Effekt auf vom Ferromagneten emittierten Magnonen basiert. Im letzten Abschnitt dieser Arbeit präsentieren wir Messungen in einem bislang nicht untersuchten ferrimagnetischen Material, welche zwei Vorzeichenwechsel des Spin Seebeck Effekts als Funktion der Temperatur aufzeigen. Dieses bisher unbekannte Signalverhalten betont, dass der Effekt aus einem komplexen Zusammenspiel der magnonischen Moden resultiert und zusätzlich vom Detektormaterial abhängt.rnSomit tragen unsere Ergebnisse und Beobachtungen im hohen Maße zur Beantwortung der Frage nach dem Ursprungs des Spin Seebeck Effekts bei und zeigen neuartige bisher nicht beobachtete Effekte, welche ein neues Kapitel für das Gebiet der Spin Kaloritronik eröffnen.
Resumo:
Glycan-binding antibodies form a significant subpopulation of both natural and acquired antibodies and play an important role in various immune processes. They are for example involved in innate immune responses, cancer, autoimmune diseases, and neurological disorders. In the present study, a microsphere-based flow-cytometric immunoassay (suspension array) was applied for multiplexed detection of glycan-binding antibodies in human serum. Several approaches for immobilization of glycoconjugates onto commercially available fluorescent microspheres were compared, and as the result, the design based on coupling of end-biotinylated glycopolymers has been selected. This method requires only minute amounts of glycans, similar to a printed glycan microarray. The resulting glyco-microspheres were used for detection of IgM and IgG antibodies directed against ABO blood group antigens. The possibility of multiplexing this assay was demonstrated with mixtures of microspheres modified with six different ABO related glycans. Multiplexed detection of anti-glycan IgM and IgG correlated well with singleplex assays (Pearson's correlation coefficient r = 0.95-0.99 for sera of different blood groups). The suspension array in singleplex format for A/B trisaccharide, H(di) and Le(x) microspheres corresponded well to the standard ELISA (r > 0.94). Therefore, the described method is promising for rapid, sensitive, and reproducible detection of anti-glycan antibodies in a multiplexed format.
Resumo:
This paper reports on the application of full-body radiography to nontraumatic emergency situations. The Lodox Statscan is an X-ray machine capable of imaging the entire body in 13 seconds using linear slit scanning radiography (LSSR). Nontraumatic emergency applications in ventriculoperitoneal (VP) shunt visualisation, emergency room arteriography (ERA), detection of foreign bodies, and paediatric emergency imaging are presented. Reports show that the fast, full-body, and low-dose scanning capabilities of the Lodox system make it well suited to these applications, with the same or better image quality, faster processing times, and lower dose to patients. In particular, the large format scans allowing visualisation of a greater area of anatomy make it well suited to VP shunt monitoring, ERA, and the detection of foreign bodies. Whilst more studies are required, it can be concluded that the Lodox Statscan has the potential for widespread use in these and other nontraumatic emergency radiology applications.
Resumo:
BACKGROUND: Pneumothoraces are a common injury pattern in emergency medicine. Rapid and safe identification can reduce morbidity and mortality. A new handheld, battery powered device, the Pneumoscan (CE 561036, PneumoSonics Inc., Cleveland, OH, USA), using micropower impulse radar (MIR) technology, has recently been introduced in Europe for the rapid and reliable detection of PTX. However, this technology has not yet been tested in trauma patients. This is the first quality control evaluation to report on emergency room performance of a new device used in the trauma setting. MATERIAL AND METHODS: This study was performed at a Level I trauma centre in Switzerland. All patients with thoracic trauma and undergoing chest X-ray and CT-scan were eligible for the study. Readings were performed before the chest X-ray and CT scan. The patients had eight lung fields tested (four on each side). All readings with the Pneumoscan were performed by two junior residents in our department who had previously received an instructional tutorial of 15min. The qualitative MIR results were blinded, and stored on the device. We then compared the results of the MIR to those of the clinical examination, chest X-ray and CT-scan. RESULTS: 50 patients were included, with a mean age of 46 (SD 17) years. Seven patients presented with PTX diagnosed by CT; six of these were detected by Pneumoscan, leading to an overall sensitivity of 85.7 (95% confidence interval 42.1-99.6)%. Only two of seven PTX were found during clinical examination and on chest X-ray (sensitivity 28.6 (95% CI 3.7-71.0)%). Of the remaining 43 of 50 patients without PTX, one false-positive PTX was found by the Pneumoscan, resulting in a specificity of 97.7 (95% CI 87.7-99.9)%. DISCUSSION: The Pneumoscan is an easy to use handheld technology with reliable results. In this series, the sensitivity to detect a PTX by the Pneumoscan was higher than by clinical examination and chest X-ray. Further studies with higher case numbers and a prospective study design are needed to confirm our findings.
Resumo:
Recombinant human group II phospholipase A2 (sPLA2) added to human platelets in the low microg/ml range induced platelet activation, as demonstrated by measurement of platelet aggregation, thromboxane A2 generation and influx of intracellular free Ca2+ concentration and by detection of time-dependent tyrosine phosphorylation of platelet proteins. The presence of Ca2+ at low millimolar concentrations is a prerequisite for the activation of platelets by sPLA2. Mg2+ cannot replace Ca2+. Mg2+, given in addition to the necessary Ca2+, inhibits sPLA2-induced platelet activation. Pre-exposure to sPLA2 completely blocked the aggregating effect of a second dose of sPLA2. Albumin or indomethacin inhibited sPLA2-induced aggregation, similarly to the inhibition of arachidonic acid-induced aggregation. Platelets pre-treated with heparitinase or phosphatidylinositol-specific phospholipase C lost their ability to aggregate in response to sPLA2, although they still responded to other agonists. This suggests that a glycophosphatidylinositol-anchored platelet-membrane heparan sulphate proteoglycan is the binding site for sPLA2 on platelets. Previous reports have stated that sPLA2 is unable to activate platelets. The inhibitory effect of albumin and Mg2+, frequently used in aggregation studies, and the fact that isolated platelets lose their responsiveness to sPLA2 relatively quickly, may explain why the platelet-activating effects of sPLA2 have not been reported earlier.
Resumo:
Biological homochirality on earth and its tremendous consequences for pharmaceutical science and technology has led to an ever increasing interest in the selective production, the resolution and the detection of enantiomers of a chiral compound. Chiral surfaces and interfaces that can distinguish between enantiomers play a key role in this respect as enantioselective catalysts as well as for separation purposes. Despite the impressive progress in these areas in the last decade, molecular-level understanding of the interactions that are at the origin of enantiodiscrimination are lagging behind due to the lack of powerful experimental techniques to spot these interactions selectively with high sensitivity. In this article, techniques based on infrared spectroscopy are highlighted that are able to selectively target the chiral properties of interfaces. In particular, these methods are the combination of Attenuated Total Reflection InfraRed (ATR-IR) with Modulation Excitation Spectroscopy (MES) to probe enantiodiscriminating interactions at chiral solid-liquid interfaces and Vibrational Circular Dichroism (VCD), which is used to probe the structure of chirally-modified metal nanoparticles. The former technique aims at suppressing signals arising from non-selective interactions, which may completely hide the signals of interest due to enantiodiscriminating interactions. Recently, this method was successfully applied to investigate enantiodiscrimination at self-assembled monolayers of chiral thiols on gold surfaces. The nanometer size analogues of the latter--gold nanoparticles protected by a monolayer of a chiral thiol--are amenable to VCD spectroscopy. It is shown that this technique yields detailed structural information on the adsorption mode and the conformation of the adsorbed thiol. This may also turn out to be useful to clarify how chirality can be bestowed onto the metal core itself and the nature of the chirality of the latter, which is manifested in the metal-based circular dichroism activity of these nanoparticles.
Resumo:
Autoantibodies play a key role in diagnostic laboratories as markers of autoimmune diseases. In addition to their role as markers they mediate diverse effects in vivo. Autoantibodies with protective effect have been described. Natural protective IgM autoantibodies against tumour-antigens of malignant cells or their precursors may contribute to increased survival rates of carcinoma patients. In a mouse model of systemic lupus erythematosus it has been shown that anti-dsDNA IgM autoantibodies protect from glomerular damage. In contrast, a direct pathogenic role of autoantibodies has been well established e.g. in myasthenia gravis or in Goodpasture syndrome. Similarly autoantibodies against SSA Ro52 are detrimental in neonatal lupus erythematosus with congenital heart block. Moreover, putatively protective autoantibodies may become pathogenic during the course of the disease such as the onconeuronal autoantibodies whose pathogenicity depends on their compartmentalisation. In patients with paraneoplastic syndromes tumour cells express proteins that are also naturally present in the brain. Anti-tumour autoantibodies which temporarily suppress tumour growth can provoke an autoimmune attack on neurons once having crossed the blood-brain barrier and cause specific neurological symptoms. Only a restricted number of autoantibodies are useful follow-up markers for the effectiveness of treatment in autoimmune diseases. Certain autoantibodies hold prognostic value and appear years or even decades before the diagnosis of disease such as the antimitochondrial antibodies in primary biliary cirrhosis or anti-citrullinated protein (CCP)-antibodies in rheumatoid arthritis. It is crucial to know whether the autoantibodies in question recognise linear or conformational epitopes in order to choose the appropriate detection methods. Indirect immunofluorescence microscopy remains a very useful tool for confirmation of results of commercially available immunoassays and for detection of special and rare autoantibodies that otherwise often remain undetected. Standardisation of autoimmune diagnostics is still underway and requires joint efforts by laboratories, clinicians and industry.
Resumo:
Endothelial progenitor cells (EPC) are involved in many healing processes in cardiovascular diseases and can be found in spontaneously resolving venous thrombi. The purpose of the present study was to investigate whether the therapeutic administration of EPC might enhance the resolution of venous thrombi. For this purpose, venous thrombosis was induced in the infrarenal inferior vena cava (IVC) in 28 athymic nude rats. Culture expanded EPC derived from human peripheral blood mononuclear cells were injected intravenously two and four days after thrombus induction. Recanalisation of the IVC and thrombus organisation were assessed by laser Doppler measurements of the blood flow and immunohistochemical detection of endothelialised luminal structures in the thrombus. EPC transplantation resulted in significantly enhanced thrombus neovascularisation (capillary density: 186.6 +/- 26.7/HPF vs. 78 +/- 12.3/HPF, p<0.01; area covered by capillaries: 8.9 +/- 1.7 microm(2) vs. 2.5 +/- 1.3 microm(2), p<0.01) and was accompanied by a substantial increase in intra-thrombus blood flow (perfusion ratio: 0.7 +/- 0.07 vs. 0.3 +/- 0.08, p<0.02). These results were paralleled by augmented macrophage recruitment into resolving thrombi in the animals treated with EPC (39.4 +/- 4.7/HPF vs. 11.6 +/- 1.9/HPF, p<0.01). Our data suggest that EPC transplantation might be of clinical value to facilitate venous thrombus resolution in cases where current therapeutic options have limited success.
Resumo:
Bovine mastitis, an inflammatory disease of the mammary gland, is one of the most costly diseases affecting the dairy industry. The treatment and prevention of this disease is linked heavily to the use of antibiotics in agriculture and early detection of the primary pathogen is essential to control the disease. Milk samples (n=67) from cows suffering from mastitis were analyzed for the presence of pathogens using PCR electrospray-ionization mass spectrometry (PCR/ESI-MS) and were compared with standard culture diagnostic methods. Concurrent identification of the primary mastitis pathogens was obtained for 64% of the tested milk samples, whereas divergent results were obtained for 27% of the samples. The PCR/ESI-MS failed to identify some of the primary pathogens in 18% of the samples, but identified other pathogens as well as microorganisms in samples that were negative by culture. The PCR/ESI-MS identified bacteria to the species level as well as yeasts and molds in samples that contained a mixed bacterial culture (9%). The sensitivity of the PCR/ESI-MS for the most common pathogens ranged from 57.1 to 100% and the specificity ranged from 69.8 to 100% using culture as gold standard. The PCR/ESI-MS also revealed the presence of the methicillin-resistant gene mecA in 16.2% of the milk samples, which correlated with the simultaneous detection of staphylococci including Staphylococcus aureus. We demonstrated that PCR/ESI-MS, a more rapid diagnostic platform compared with bacterial culture, has the significant potential to serve as an important screening method in the diagnosis of bovine clinical mastitis and has the capacity to be used in infection control programs for both subclinical and clinical disease.
Resumo:
We describe a system for performing SLA-driven management and orchestration of distributed infrastructures composed of services supporting mobile computing use cases. In particular, we focus on a Follow-Me Cloud scenario in which we consider mobile users accessing cloud-enable services. We combine a SLA-driven approach to infrastructure optimization, with forecast-based performance degradation preventive actions and pattern detection for supporting mobile cloud infrastructure management. We present our system's information model and architecture including the algorithmic support and the proposed scenarios for system evaluation.
Resumo:
The development of a robust assay based on MEKC for cefepime in human serum and plasma with internal quality assurance is reported. Sample preparation comprises protein precipitation in the presence of SDS at pH 4.5. This is a gentle approach for which decomposition of cefepime during sample handling is negligible. After hydrodynamic sample injection of the supernatant, analysis occurs in a phosphate/borate buffer at pH 9.1 with 75 mM SDS using normal polarity and analyte detection at 257 nm. The MEKC run time interval and throughput are about 5 min and seven samples per hour, respectively. The calibration range for cefepime is 1-60 μg/mL, with 1 μg/mL being the LOQ. The performance of the assay with multilevel internal calibration was assessed with calibration and control samples. The assay is shown to be simple, inexpensive, reproducible, and robust. It was applied to determine cefepime levels in the sera of critically ill patients and to assess the instability of cefepime in patient and control samples. Our data revealed that serum containing cefepime can be stored at -20°C for a short time, whereas for long-term storage, samples have to be kept at -70°C.
Resumo:
Postmortem imaging is increasingly used in forensic practice in cases of natural deaths related to cardiovascular diseases, which represent the most common causes of death in developed countries. While radiological examination is generally considered to be a good complement for conventional autopsy, it was thought to have limited application in cardiovascular pathology. At present, multidetector computed tomography (MDCT), CT angiography, and cardiac magnetic resonance imaging (MRI) are used in postmortem radiological investigation of cardiovascular pathologies. This review presents the actual state of postmortem imaging for cardiovascular pathologies in cases of sudden cardiac death (SCD), taking into consideration both the advantages and limitations. The radiological evaluation of ischemic heart disease (IHD), the most frequent cause of SCD in the General population of industrialized countries, includes the examination of the coronary arteries and myocardium. Postmortem CT angiography (PMCTA) is very useful for the detection of stenoses and occlusions of coronary arteries but less so for the identification of ischemic myocardium. MRI is the method of choice for the radiological investigation of the myocardium in clinical practice, but ist accessibility and application are still limited in postmortem practice. There are very few reports implicating postmortem radiology in the investigation of other causes of SCD, such as cardiomyopathies, coronary artery abnormalities, and valvular pathologies. Cardiomyopathies representing the most frequent cause of SCD in young athletes cannot be diagnosed by echocardiography, the most widely available technique in clinical practice for the functional evaluation of the heart and the detection of cardiomyopathies. PMCTA and MRI have the potential to detect advanced stages of diseases when morphological substrate is present, but these methods have yet to be sufficiently validated for postmortem cases. Genetically determined channelopathies cannot be detected radiologically. This review underlines the need to establish the role of postmortem radiology in the diagnosis of SCD.
Resumo:
BACKGROUND Small benign insulinomas are hard to localise, leading to difficulties in planning of surgical interventions. We aimed to prospectively assess the insulinoma detection rate of single-photon emission CT in combination with CT (SPECT/CT) with a glucagon-like peptide-1 receptor avid radiotracer, and compare detection rates with conventional CT/MRI techniques. METHODS In our prospective imaging study, we enrolled adults aged 25-81 years at centres in Germany, Switzerland, and the UK. Eligible patients had proven clinical and biochemical endogenous hyperinsulinaemic hypoglycaemia and no evidence for metastatic disease on conventional imaging. CT/MRI imaging was done at referring centres according to standard protocols. At three tertiary nuclear medicine centres, we used whole body planar images and SPECT/CT of the abdomen up to 168 h after injection of (111)In-[Lys40(Ahx-DTPA-(111)In)NH2]-exendin-4 ((111)In-DTPA-exendin-4) to identify insulinomas. Consenting patients underwent surgery and imaging findings were confirmed histologically. FINDINGS Between Oct 1, 2008, and Dec 31, 2011, we recruited 30 patients. All patients underwent (111)In-DTPA-exendin-4 imaging, 25 patients underwent surgery (with histological analysis), and 27 patients were assessed with CT/MRI. (111)In-DTPA-exendin-4 SPECT/CT correctly detected 19 insulinomas and four additional positive lesions (two islet-cell hyperplasia and two uncharacterised lesions) resulting in a positive predictive value of 83% (95% CI 62-94). One true negative (islet-cell hyperplasia) and one false negative (malignant insulinoma) result was identified in separate patients by (111)In-DTPA-exendin-4 SPECT/CT. Seven patients (23%) were referred to surgery on the basis of (111)In-DTPA-exendin-4 imaging alone. For 23 assessable patients, (111)In-DTPA-exendin-4 SPECT/CT had a higher sensitivity (95% [95% CI 74-100]) than did CT/MRI (47% [27-68]; p=0·011). INTERPRETATION (111)In-DTPA-exendin-4 SPECT/CT could provide a good second-line imaging strategy for patients with negative results on initial imaging with CT/MRI. FUNDING Oncosuisse, the Swiss National Science Foundation, and UK Department of Health.
Resumo:
In this paper, we propose a fully automatic, robust approach for segmenting proximal femur in conventional X-ray images. Our method is based on hierarchical landmark detection by random forest regression, where the detection results of 22 global landmarks are used to do the spatial normalization, and the detection results of the 59 local landmarks serve as the image cue for instantiation of a statistical shape model of the proximal femur. To detect landmarks in both levels, we use multi-resolution HoG (Histogram of Oriented Gradients) as features which can achieve better accuracy and robustness. The efficacy of the present method is demonstrated by experiments conducted on 150 clinical x-ray images. It was found that the present method could achieve an average point-to-curve error of 2.0 mm and that the present method was robust to low image contrast, noise and occlusions caused by implants.