999 resultados para hydroxyapatite nanoparticles
Resumo:
Surface plasmons supported by metal nanoparticles are perturbed by coupling to a surface that is polarizable. Coupling results in enhancement of near fields and may increase the scattering efficiency of radiative modes. In this study, we investigate the Rayleigh and Raman scattering properties of gold nanoparticles functionalized with cyanine deposited on silicon and quartz wafers and on gold thin films. Dark-field scattering images display red shifting of the gold nanoparticle plasmon resonance and doughnut-shaped scattering patterns when particles are deposited on silicon or on a gold film. The imaged radiation patterns and individual particle spectra reveal that the polarizable substrates control both the orientation and brightness of the radiative modes. Comparison with simulation indicates that, in a particle-surface system with a fixed junction width, plasmon band shifts are controlled quantitatively by the permittivity of the wafer or the film. Surface-enhanced resonance Raman scattering (SERRS) spectra and images are collected from cyanine on particles on gold films. SERRS images of the particles on gold films are doughnut-shaped as are their Rayleigh images, indicating that the SERRS is controlled by the polarization of plasmons in the antenna nanostructures. Near-field enhancement and radiative efficiency of the antenna are sufficient to enable Raman scattering cyanines to function as gap field probes. Through collective interpretation of individual particle Rayleigh spectra and spectral simulations, the geometric basis for small observed variations in the wavelength and intensity of plasmon resonant scattering from individual antenna on the three surfaces is explained.
Resumo:
Multivalency is the increase in avidity resulting from the simultaneous interaction of multiple ligands with multiple receptors. This phenomenon, seen in antibody-antigen and virus-cell membrane interactions, is useful in designing bioinspired materials for targeted delivery of drugs or imaging agents. While increased avidity offered by multivalent targeting is attractive, it can also promote nonspecific receptor interaction in nontarget tissues, reducing the effectiveness of multivalent targeting. Here, we present a thermal targeting strategy--dynamic affinity modulation (DAM)--using elastin-like polypeptide diblock copolymers (ELP(BC)s) that self-assemble from a low-affinity to high-avidity state by a tunable thermal "switch", thereby restricting activity to the desired site of action. We used an in vitro cell binding assay to investigate the effect of the thermally triggered self-assembly of these ELP(BC)s on their receptor-mediated binding and cellular uptake. The data presented herein show that (1) ligand presentation does not disrupt ELP(BC) self-assembly; (2) both multivalent ligand presentation and upregulated receptor expression are needed for receptor-mediated interaction; (3) increased size of the hydrophobic segment of the block copolymer promotes multivalent interaction with membrane receptors, potentially due to changes in the nanoscale architecture of the micelle; and (4) nanoscale presentation of the ligand is important, as presentation of the ligand by micrometer-sized aggregates of an ELP showed a low level of binding/uptake by receptor-positive cells compared to its presentation on the corona of a micelle. These data validate the concept of thermally triggered DAM and provide rational design parameters for future applications of this technology for targeted drug delivery.
Resumo:
Responsive biomaterials play important roles in imaging, diagnostics, and therapeutics. Polymeric nanoparticles (NPs) containing hydrophobic and hydrophilic segments are one class of biomaterial utilized for these purposes. The incorporation of luminescent molecules into NPs adds optical imaging and sensing capability to these vectors. Here we report on the synthesis of dual-emissive, pegylated NPs with "stealth"-like properties, delivered intravenously (IV), for the study of tumor accumulation. The NPs were created by means of stereocomplexation using a methoxy-terminated polyethylene glycol and poly(D-lactide) (mPEG-PDLA) block copolymer combined with iodide-substituted difluoroboron dibenzoylmethane-poly(L-lactide) (BF2dbm(I)PLLA). Boron nanoparticles (BNPs) were fabricated in two different solvent compositions to study the effects on BNP size distribution. The physical and photoluminescent properties of the BNPs were studied in vitro over time to determine stability. Finally, preliminary in vivo results show that stereocomplexed BNPs injected IV are taken up by tumors, an important prerequisite to their use as hypoxia imaging agents in preclinical studies.
Resumo:
The blood brain barrier (BBB) is a semi-permeable membrane separating the brain from the bloodstream, preventing many drugs that treat neurological diseases, such as Alzheimer’s and Parkinson’s, from reaching the brain. Our project aimed to create a novel drug delivery system targeting the brain during neural inflammation. We developed a cationic solid lipid nanoparticle (CSLN) complex composed of cationic nanoparticles, biotin, streptavidin, and anti-vascular cell adhesion molecule-1 (anti- VCAM-1) antibodies. The anti-VCAM-1 antibody is used to target VCAM-1, a cell adhesion protein found on the BBB endothelium. VCAM-1 expression is elevated in the presence of inflammatory molecules, such as tumor necrosis factor-alpha (TNF- α). Through the use of a simple BBB model, results showed that our novel drug delivery system experienced some level of success in targeting the brain inflammation due to increasing TNF-α concentrations. This is promising for drug delivery research and provides support for VCAM-1 targeting using more robust and complex BBB models.
Resumo:
Silica nanoparticles (MSNs) with a highly ordered mesoporous structures (103A) with cubic Im3 m have been synthesized using triblock copolymers with high poly(alkylene oxide) (EO) segments in acid media. The produced nanoparticles displayed large specific surface area (approximately 765 cm(2)/g) with an average particles size of 120 nm. The loading efficiency was assessed by incorporating three major antiepileptic active substances via passive loading and it was found to varying from 17 to 25%. The state of the adsorbed active agents was further analyzed using differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Dissolution studies revealed rapid release profiles within the first 3 h. The viability of 3T3 endothelial cells was not affected in the presence of MSNs indicating negligible cytotoxicity. 2009 Elsevier B.V. All rights reserved.
Resumo:
Laboratory simulation of cloud processing of three model dust types with distinct Fe-content (Moroccan dust, Libyan dust and Etna ash) and reference goethite and ferrihydrite were conducted in order to gain a better understanding of natural nanomaterial inputs and their environmental fate and bioavailability. The resulting nanoparticles (NPs) were characterised for Fe dissolution kinetics, aggregation/size distribution, micromorphology and colloidal stability of particle suspensions using a multi-method approach. We demonstrated that the: (i) acid-leachable Fe concentration was highest in volcanic ash (1 m Mg(-1) dust) and was followed by Libyan and Moroccan dust with an order of magnitude lower levels; (ii) acid leached Fe concentration in the<20 nm fraction was similar in samples processed in the dark with those under artificial sunlight, but average hydrodynamic diameter of NPs after cloud-processing (pH~6) was larger in the former; iii) NPs formed at pH~6 were smaller and less poly-disperse than those at low pH, whilst unaltered zeta potentials indicated colloidal instability; iv) relative Fe percentage in the finer particles derived from cloud processing does not reflect Fe content of unprocessed dusts (e.g. volcanic ash>Libyan dust). The common occurrence of Fe-rich "natural nanoparticles" in atmospheric dust derived materials may indicate their more ubiquitous presence in the marine environment than previously thought.
Resumo:
Laboratory studies were conducted to investigate the interactions of nanoparticles (NPs) formed via simulated cloud processing of mineral dust with seawater under environmentally relevant conditions. The effect of sunlight and the presence of exopolymeric substances (EPS) were assessed on the: (1) colloidal stability of the nanoparticle aggregates (i.e. size distribution, zeta potential, polydispersity); (2) micromorphology and (3) Fe dissolution from particles. We have demonstrated that: (i) synthetic nano-ferrihydrite has distinct aggregation behaviour from NPs formed from mineral dusts in that the average hydrodynamic diameter remained unaltered upon dispersion in seawater (~1500 nm), whilst all dust derived NPs increased about three fold in aggregate size; (ii) relatively stable and monodisperse aggregates of NPs formed during simulated cloud processing of mineral dust become more polydisperse and unstable in contact with seawater; (iii) EPS forms stable aggregates with both the ferrihydrite and the dust derived NPs whose hydrodynamic diameter remains unchanged in seawater over 24h; (iv) dissolved Fe concentration from NPs, measured here as <3 kDa filter-fraction, is consistently >30% higher in seawater in the presence of EPS and the effect is even more pronounced in the absence of light; (v) micromorphology of nanoparticles from mineral dusts closely resemble that of synthetic ferrihydrite in MQ water, but in seawater with EPS they form less compact aggregates, highly variable in size, possibly due to EPS-mediated steric and electrostatic interactions. The larger scale implications on real systems of the EPS solubilising effect on Fe and other metals with the additional enhancement of colloidal stability of the resulting aggregates are discussed.
Resumo:
Laboratory studies were conducted to evaluate the interaction between bare and polymer-coated magnetic nanoparticles (MNPs) with various environmentally relevant carrying solutions including natural oceanic seawater with and without addition of algal exopolymeric substances (EPS). The MNPs were coated with three different stabilising agents, namely gum Arabic (GA-MNP), dextran (D-MNP) and carboxymethyl-dextran (CMD-MNP). The colloidal stability of the suspensions was evaluated over 48 h and we demonstrated that: (i) hydrodynamic diameters increased over time regardless of carrying solution for all MNPs except the GA-coated ones; however, the relative changes were carrying solution- and coat-dependent; (ii) polydispersity indexes of the freshly suspended MNPs are below 0.5 for all coated MNPs, unlike the much higher values obtained for the uncoated MNPs; (iii) freshly prepared MNP suspensions (both coated and uncoated) in Milli-Q (MQ) water show high colloidal stability as indicated by zeta-potential values below -30 mV, which however decrease in absolute value within 48 h for all MNPs regardless of carrying solution; (iv) EPS seems to "stabilise" the GA-coated and the CMD-coated MNPs, but not the uncoated or the D-coated MNPs, which form larger aggregates within 48 h; (v) despite this aggregation, iron (Fe)-leaching from MNPs is sustained over 48 h, but remained within the range of 3-9% of the total iron-content of the initially added MNPs regardless of suspension media and capping agent. The environmental implications of our findings and biotechnological applicability of MNPs are discussed.