950 resultados para hydrocollidial coatings


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas-phase silver nanoparticles were coated with silicon dioxide (SiO2) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 degrees C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10(7) particles cm(-3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydroxyapatite-gelatin composites have been proposed as suitable scaffolds for bone and dentin tissue regeneration. There is considerable interest in producing these scaffolds using biomimetic methods due to their low energy costs and potential to create composites similar to the tissues they are intended to replace. Here an existing process used to coat a surface with hydroxyapatite under near physiological conditions, the alternate soaking process, is modified and automated using an inexpensive "off the shelf" robotics kit. The process is initially used to precipitate calcium phosphate coatings. Then, in contrast to previous utilizations of the alternate soaking process, gelatin was added directly to the solutions in order to co-precipitate hydroxyapatite-gelatin composites. Samples were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and nanoindentation. Calcium phosphate coatings formed by the alternate soaking process exhibited different calcium to phosphate ratios, with correspondingly distinct structural morphologies. The coatings demonstrated an interconnected structure with measurable mechanical properties, even though they were 95% porous. In contrast, hydroxyapatite-gelatin composite coatings over 2mm thick could be formed with little visible porosity. The hydroxyapatite-gelatin composites demonstrate a composition and mechanical properties similar to those of cortical bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrasmoothness of diamond-like carbon coatings is explained by an atomistic/continuum multiscale model. At the atomic scale, carbon ion impacts induce downhill currents in the top layer of a growing film. At the continuum scale, these currents cause a rapid smoothing of initially rough substrates by erosion of hills into neighboring hollows. The predicted surface evolution is in excellent agreement with atomic force microscopy measurements. This mechanism is general, as shown by similar simulations for amorphous silicon. It explains the recently reported smoothing of multilayers and amorphous transition metal oxide films and underlines the general importance of impact-induced downhill currents for ion deposition, polishing, and nanopattering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro-electro-mechanical systems, MEMS, is a rapidly growing interdisciplinary technology within the general field of Micro-Systems Technology which deals with the design and manufacture of miniaturised machines with major dimensions at the scale of tens, to perhaps hundreds, of microns. Because they depend on the cube of a representative dimension, component masses and inertias rapidly become small as size decreases whereas surface and tribological effects, which often depend on area, become increasingly important. Although MEMS components and their areas of contact are small, tribological conditions, measured by contact pressures or acceptable wear rates, are demanding and technical and commercial success will require careful measurement and precise control of surface topography and properties. Fabrication of small numbers of MEMS devices designed to test potential material combinations can be prohibitively expensive and thus there is a need for small scale test facilities which mimic the contact conditions within a micro-machine without themselves requiring processing within a full semiconductor foundry. The talk will illustrate some initial experimental results from a small-scale experimental device which meets these requirements, examining in particular the performance of Diamond-Like-Carbon coatings on a silicon substrate. Copyright © 2005 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of weathering on the wear resistance of automotive clearcoats has been evaluated. Acrylic-based and urethane-based coatings were exposed in Florida, Belgium and Australia and also under accelerated conditions to SAE J1960 with 0.55 W m -2 borosilicate/borosilicate filtered xenon arc light. Weathering caused a significant reduction in the abrasion and erosion resistance of the clearcoats and large increases in their hardness. Accelerated weathering produced different effects from natural exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal barrier coatings with a columnar microstructure are prone to erosion damage by a mechanism of surface cracking upon impact by small foreign particles. In order to explore this erosion mechanism, the elastic indentation and the elastic-plastic indentation responses of a columnar thermal barrier coating to a spherical indenter were determined by the finite element method and by analytical models. It was shown that the indentation response is intermediate between that of a homogeneous half-space and that given by an elastic-plastic mattress model (with the columns behaving as independent non-linear springs). The sensitivity of the indentation behaviour to geometry and to the material parameters was explored: the diameter of the columns, the gap width between columns, the coefficient of Coulomb friction between columns and the layer height of the thermal barrier coating. The calculations revealed that the level of induced tensile stress is sufficient to lead to cracking of the columns at a depth of about the column radius. It was also demonstrated that the underlying soft bond coat can undergo plastic indentation when the coating comprises parallel columns, but this is less likely for the more realistic case of a random arrangement of tapered columns. © 2009 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology for the deposition of Ti and Ti64 coatings on various substrates using supersonic powder streams and impact site laser heating. Full density metallic deposits are obtained under appropriate impact conditions without the need for transiting the melting point of the deposited material or substrate leading to large energy savings. Details of the experimental approach will be presented along with the general characteristics of the titanium coatings produced using this novel coatings method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were deposited at high rates ( > 50 nm min-1) using a unique technique known as high target utilisation sputtering (HiTUS). The films obtained possess good crystallographic orientation, low surface roughness, very low stress and excellent piezoelectric properties. We have utilised the films to develop highly sensitive biosensors based on thickness longitudinal mode (TLM) thin film bulk acoustic resonators (FBARs). The FBARs have the fundamental TLM at a frequency near 1.5 GHz and quality factor Q higher than 1,000, which is one of the largest values ever reported for ZnO-based FBARs. Bovine Serum Albumin (BSA) solutions with different concentrations were placed on the top of different sets of identical FBARs and their responses to mass-loading from physically adsorbed protein coatings were investigated. These resonators demonstrated a high sensitivity and thus have a great potential as gravimetric sensors for biomedical applications. © 2011 Inderscience Enterprises Ltd.