967 resultados para hybrid evolutionary programming
Resumo:
We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3041477]
Resumo:
Male meiosis was studied in 9 different mating combinations in parental, first, second and backcross generation hybrids of Clarias anguillaris and Heterobranchus longifilis. 27 bivalents were recorded in metaphase I for seven mating combinations. The number of bivalents in F1 hybrid male x C. anguillaris female could not be determined due to a high degree of clumping of the chromosomes. All metaphase I cells observed in female F1 hybrid x male H. longifilis had three complex bivalents consisting of 43.3% giant ring and 56.7% giant rod chromosomes. The number of ring bivalents per cell was higher in parental H. longifilis than parental C. anguillaris. The number of ring bivalents per cell increased from F1 (6.7 and 8.2) to F2 backcross (13.5) hybrid generations indicating increasing chromosomal instability of backcross hybrids over Fl and F2 hybrids
Resumo:
46 p.
Resumo:
A 32.1 W laser-diode-stack pumped acoustic-optic Q-switched Nd:YVO4 slab laser with hybrid resonator at 1064 nm was demonstrated with the pumping power of 112 W and repetition rate of 40 kHz, the pulse duration was 32.47 ns. The slope efficiency and optical-to-optical efficiency were 37 and 28.7%, respectively. At the repetition rate of 20 kHz and pumping power of 90 W, the average output power and pulse duration were 20.4 W and 20.43 ns, respectively. With the pumping power of 112 W, the beam quality M-2 factors in CW operation were measured to be 1.3 in stable direction and 1.6 in unstable direction.
Resumo:
The growth response, feed conversion ratio and cost benefits of hybrid catfish, Heterobranchus longifilis x Clarias gariepinus fed five maggot meal based diets were evaluated for 56 days in outdoor concrete tanks. Twenty-five fingerlings of the hybrid fish were stocked in ten outdoor concrete tanks of dimension 1.2mx0.13mx0.18m and code MM sub(1)-MM sub(5) in relation to their diet name. Five isonitrogenous and isocaloric maggot meal based diets namely MM sub(1)-0% maggot meal, MM sub(2)-25% maggot meal, MM sub(3)-50% maggot meal, MM sub(4-)75% maggot meal and MM sub(5-) 100% maggot meal were used for the experiment. The higher the proportion of maggot in the meal, the higher the ether extract and crude fiber. No significance difference P>0.05 exists between ash content of the experimental diets. Diet MM sub(2) had the best growth performance and highest MGR with a significant difference P<0.05 with other diets fed fish. No significance differences P>0.05 exists between the growth parameters for diets MM sub(1), MM sub(3), and MM sub(4). A positive correlation (r=1.0) exists (P<0.05, 0.25) between the growth parameters for the different experimental diets. Highest correlation r super(2)=0.9981 exists P<0.05 between MGR within the treatments. However, there no significant (P>0.05) difference in expenditure but there is between the profit indices and incidence of cost between the trials. MM sub(2) has the best yield cost and net profit. Without any reservation, inclusion of maggot based meal diet is recommended as feed of hybrid catfish to 75% inclusion for growth and profit incidence
Resumo:
Life is the result of the execution of molecular programs: like how an embryo is fated to become a human or a whale, or how a person’s appearance is inherited from their parents, many biological phenomena are governed by genetic programs written in DNA molecules. At the core of such programs is the highly reliable base pairing interaction between nucleic acids. DNA nanotechnology exploits the programming power of DNA to build artificial nanostructures, molecular computers, and nanomachines. In particular, DNA origami—which is a simple yet versatile technique that allows one to create various nanoscale shapes and patterns—is at the heart of the technology. In this thesis, I describe the development of programmable self-assembly and reconfiguration of DNA origami nanostructures based on a unique strategy: rather than relying on Watson-Crick base pairing, we developed programmable bonds via the geometric arrangement of stacking interactions, which we termed stacking bonds. We further demonstrated that such bonds can be dynamically reconfigurable.
The first part of this thesis describes the design and implementation of stacking bonds. Our work addresses the fundamental question of whether one can create diverse bond types out of a single kind of attractive interaction—a question first posed implicitly by Francis Crick while seeking a deeper understanding of the origin of life and primitive genetic code. For the creation of multiple specific bonds, we used two different approaches: binary coding and shape coding of geometric arrangement of stacking interaction units, which are called blunt ends. To construct a bond space for each approach, we performed a systematic search using a computer algorithm. We used orthogonal bonds to experimentally implement the connection of five distinct DNA origami nanostructures. We also programmed the bonds to control cis/trans configuration between asymmetric nanostructures.
The second part of this thesis describes the large-scale self-assembly of DNA origami into two-dimensional checkerboard-pattern crystals via surface diffusion. We developed a protocol where the diffusion of DNA origami occurs on a substrate and is dynamically controlled by changing the cationic condition of the system. We used stacking interactions to mediate connections between the origami, because of their potential for reconfiguring during the assembly process. Assembling DNA nanostructures directly on substrate surfaces can benefit nano/microfabrication processes by eliminating a pattern transfer step. At the same time, the use of DNA origami allows high complexity and unique addressability with six-nanometer resolution within each structural unit.
The third part of this thesis describes the use of stacking bonds as dynamically breakable bonds. To break the bonds, we used biological machinery called the ParMRC system extracted from bacteria. The system ensures that, when a cell divides, each daughter cell gets one copy of the cell’s DNA by actively pushing each copy to the opposite poles of the cell. We demonstrate dynamically expandable nanostructures, which makes stacking bonds a promising candidate for reconfigurable connectors for nanoscale machine parts.
Resumo:
The relentlessly increasing demand for network bandwidth, driven primarily by Internet-based services such as mobile computing, cloud storage and video-on-demand, calls for more efficient utilization of the available communication spectrum, as that afforded by the resurging DSP-powered coherent optical communications. Encoding information in the phase of the optical carrier, using multilevel phase modulationformats, and employing coherent detection at the receiver allows for enhanced spectral efficiency and thus enables increased network capacity. The distributed feedback semiconductor laser (DFB) has served as the near exclusive light source powering the fiber optic, long-haul network for over 30 years. The transition to coherent communication systems is pushing the DFB laser to the limits of its abilities. This is due to its limited temporal coherence that directly translates into the number of different phases that can be imparted to a single optical pulse and thus to the data capacity. Temporal coherence, most commonly quantified in the spectral linewidth Δν, is limited by phase noise, result of quantum-mandated spontaneous emission of photons due to random recombination of carriers in the active region of the laser.
In this work we develop a generically new type of semiconductor laser with the requisite coherence properties. We demonstrate electrically driven lasers characterized by a quantum noise-limited spectral linewidth as low as 18 kHz. This narrow linewidth is result of a fundamentally new laser design philosophy that separates the functions of photon generation and storage and is enabled by a hybrid Si/III-V integration platform. Photons generated in the active region of the III-V material are readily stored away in the low loss Si that hosts the bulk of the laser field, thereby enabling high-Q photon storage. The storage of a large number of coherent quanta acts as an optical flywheel, which by its inertia reduces the effect of the spontaneous emission-mandated phase perturbations on the laser field, while the enhanced photon lifetime effectively reduces the emission rate of incoherent quanta into the lasing mode. Narrow linewidths are obtained over a wavelength bandwidth spanning the entire optical communication C-band (1530-1575nm) at only a fraction of the input power required by conventional DFB lasers. The results presented in this thesis hold great promise for the large scale integration of lithographically tuned, high-coherence laser arrays for use in coherent communications, that will enable Tb/s-scale data capacities.
Resumo:
The growth response of F1 hybrid fry of female Heterobranchus longifilis and male Clarias gariepinus were investigated under laboratory conditions in glass aquaria glass tanks and plastic basins. The larvae were produced artificially after inducement with Ovarptim. The hatching percentage was very high. Weekly mean length and weight were monitored for 6 weeks. The average length increase was higher in aquaria glass tanks than in plastic basins. However, there were depressed and irregular weight increases in both types of rearing troughs while significant weight increase (P<0.05) was recorded at week 6 in the plastic basin. Generally, the growth rate and survival in both containers were not significantly different
Resumo:
Six glass tanks, each containing dechlorinated tap water and stocked with 3-day-old Heterobranchus, larvae hybrid between, Heterobranchus longifilis (male and Clarias gariepinus (female) were administered two types of feeding trials viz: live and frozen Dapthnids. Each treatment was replicated three times. The larvae were each fed approximately 50 Dapthnids per feeding time for fifteen days. Morphometric measurements of weigh and total length were taken before and after the experiment, and water quality parameters were monitored throughout the experimental period. At the end of the experiment, fish larvae fed frozen, Dapthnids, showed higher survival rate than Heterobranchus fed live Dapthnids. Even though the statistical analysis revealed that there was no significant difference (P>0.05) in survival. However, the Heteroclarias fed live dapthnids performed better in terms of growth rate than Heteroclarias fed frozen dapthnids. The statistical analysis did not show significant difference (P>0.05) between the final length and weight of two treatments. Heteroclarias fed live dapthnids had higher length and weight than Heteroclarias fed frozen dapthnids. It was therefore concluded that based on this experiment there is the likelihood that frozen zooplankton (Daphnids) do not encourage growth of Heteroclarias, but improves its survival. However, it's suggested that frozen zooplankton can be used to supplement live zooplankton in situation of sacrcity
Resumo:
This thesis is motivated by safety-critical applications involving autonomous air, ground, and space vehicles carrying out complex tasks in uncertain and adversarial environments. We use temporal logic as a language to formally specify complex tasks and system properties. Temporal logic specifications generalize the classical notions of stability and reachability that are studied in the control and hybrid systems communities. Given a system model and a formal task specification, the goal is to automatically synthesize a control policy for the system that ensures that the system satisfies the specification. This thesis presents novel control policy synthesis algorithms for optimal and robust control of dynamical systems with temporal logic specifications. Furthermore, it introduces algorithms that are efficient and extend to high-dimensional dynamical systems.
The first contribution of this thesis is the generalization of a classical linear temporal logic (LTL) control synthesis approach to optimal and robust control. We show how we can extend automata-based synthesis techniques for discrete abstractions of dynamical systems to create optimal and robust controllers that are guaranteed to satisfy an LTL specification. Such optimal and robust controllers can be computed at little extra computational cost compared to computing a feasible controller.
The second contribution of this thesis addresses the scalability of control synthesis with LTL specifications. A major limitation of the standard automaton-based approach for control with LTL specifications is that the automaton might be doubly-exponential in the size of the LTL specification. We introduce a fragment of LTL for which one can compute feasible control policies in time polynomial in the size of the system and specification. Additionally, we show how to compute optimal control policies for a variety of cost functions, and identify interesting cases when this can be done in polynomial time. These techniques are particularly relevant for online control, as one can guarantee that a feasible solution can be found quickly, and then iteratively improve on the quality as time permits.
The final contribution of this thesis is a set of algorithms for computing feasible trajectories for high-dimensional, nonlinear systems with LTL specifications. These algorithms avoid a potentially computationally-expensive process of computing a discrete abstraction, and instead compute directly on the system's continuous state space. The first method uses an automaton representing the specification to directly encode a series of constrained-reachability subproblems, which can be solved in a modular fashion by using standard techniques. The second method encodes an LTL formula as mixed-integer linear programming constraints on the dynamical system. We demonstrate these approaches with numerical experiments on temporal logic motion planning problems with high-dimensional (10+ states) continuous systems.
Resumo:
Spontaneous emission into the lasing mode fundamentally limits laser linewidths. Reducing cavity losses provides two benefits to linewidth: (1) fewer excited carriers are needed to reach threshold, resulting in less phase-corrupting spontaneous emission into the laser mode, and (2) more photons are stored in the laser cavity, such that each individual spontaneous emission event disturbs the phase of the field less. Strong optical absorption in III-V materials causes high losses, preventing currently-available semiconductor lasers from achieving ultra-narrow linewidths. This absorption is a natural consequence of the compromise between efficient electrical and efficient optical performance in a semiconductor laser. Some of the III-V layers must be heavily doped in order to funnel excited carriers into the active region, which has the side effect of making the material strongly absorbing.
This thesis presents a new technique, called modal engineering, to remove modal energy from the lossy region and store it in an adjacent low-loss material, thereby reducing overall optical absorption. A quantum mechanical analysis of modal engineering shows that modal gain and spontaneous emission rate into the laser mode are both proportional to the normalized intensity of that mode at the active region. If optical absorption near the active region dominates the total losses of the laser cavity, shifting modal energy from the lossy region to the low-loss region will reduce modal gain, total loss, and the spontaneous emission rate into the mode by the same factor, so that linewidth decreases while the threshold inversion remains constant. The total spontaneous emission rate into all other modes is unchanged.
Modal engineering is demonstrated using the Si/III-V platform, in which light is generated in the III-V material and stored in the low-loss silicon material. The silicon is patterned as a high-Q resonator to minimize all sources of loss. Fabricated lasers employing modal engineering to concentrate light in silicon demonstrate linewidths at least 5 times smaller than lasers without modal engineering at the same pump level above threshold, while maintaining the same thresholds.