968 resultados para human hair analysis
Resumo:
Introduction: Non-invasive brain imaging techniques often contrast experimental conditions across a cohort of participants, obfuscating distinctions in individual performance and brain mechanisms that are better characterised by the inter-trial variability. To overcome such limitations, we developed topographic analysis methods for single-trial EEG data [1]. So far this was typically based on time-frequency analysis of single-electrode data or single independent components. The method's efficacy is demonstrated for event-related responses to environmental sounds, hitherto studied at an average event-related potential (ERP) level. Methods: Nine healthy subjects participated to the experiment. Auditory meaningful sounds of common objects were used for a target detection task [2]. On each block, subjects were asked to discriminate target sounds, which were living or man-made auditory objects. Continuous 64-channel EEG was acquired during the task. Two datasets were considered for each subject including single-trial of the two conditions, living and man-made. The analysis comprised two steps. In the first part, a mixture of Gaussians analysis [3] provided representative topographies for each subject. In the second step, conditional probabilities for each Gaussian provided statistical inference on the structure of these topographies across trials, time, and experimental conditions. Similar analysis was conducted at group-level. Results: Results show that the occurrence of each map is structured in time and consistent across trials both at the single-subject and at group level. Conducting separate analyses of ERPs at single-subject and group levels, we could quantify the consistency of identified topographies and their time course of activation within and across participants as well as experimental conditions. A general agreement was found with previous analysis at average ERP level. Conclusions: This novel approach to single-trial analysis promises to have impact on several domains. In clinical research, it gives the possibility to statistically evaluate single-subject data, an essential tool for analysing patients with specific deficits and impairments and their deviation from normative standards. In cognitive neuroscience, it provides a novel tool for understanding behaviour and brain activity interdependencies at both single-subject and at group levels. In basic neurophysiology, it provides a new representation of ERPs and promises to cast light on the mechanisms of its generation and inter-individual variability.
Resumo:
A collaborative exercise was carried out by the European DNA Profiling Group (EDNAP) in order to evaluate the distribution of mitochondrial DNA (mtDNA) heteroplasmy amongst the hairs of an individual who displays point heteroplasmy in blood and buccal cells. A second aim of the exercise was to study reproducibility of mtDNA sequencing of hairs between laboratories using differing chemistries, further to the first mtDNA reproducibility study carried out by the EDNAP group. Laboratories were asked to type 2 sections from each of 10 hairs, such that each hair was typed by at least two laboratories. Ten laboratories participated in the study, and a total of 55 hairs were typed. The results showed that the C/T point heteroplasmy observed in blood and buccal cells at position 16234 segregated differentially between hairs, such that some hairs showed only C, others only T and the remainder, C/T heteroplasmy at varying ratios. Additionally, differential segregation of heteroplasmic variants was confirmed in independent extracts at positions 16093 and the poly(C) tract at 302-309, whilst a complete A-G transition was confirmed at position 16129 in one hair. Heteroplasmy was observed at position 16195 on both strands of a single extract from one hair segment, but was not observed in the extracts from any other segment of the same hair. Similarly, heteroplasmy at position 16304 was observed on both strands of a single extract from one hair. Additional variants at positions 73, 249 and the HVII poly(C) region were reported by one laboratory; as these were not confirmed in independent extracts, the possibility of contamination cannot be excluded. Additionally, the electrophoresis and detection equipment used by this laboratory was different to those of the other laboratories, and the discrepancies at position 249 and the HVII poly(C) region appear to be due to reading errors that may be associated with this technology. The results, and their implications for forensic mtDNA typing, are discussed in the light of the biology of hair formation.
Resumo:
Clenbuterol is a β2 agonist agent with anabolic properties given by the increase in the muscular mass in parallel to the decrease of the body fat. For this reason, the use of clenbuterol is forbidden by the World Anti-Doping Agency (WADA) in the practice of sport. This compound is of particular interest for anti-doping authorities and WADA-accredited laboratories due to the recent reporting of risk of unintentional doping following the eating of meat contaminated with traces of clenbuterol in some countries. In this work, the development and the validation of an ultra-high pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) method for the quantification of clenbuterol in human urine is described. The analyte was extracted from urine samples by liquid-liquid extraction (LLE) in basic conditions using tert butyl-methyl ether (TBME) and analyzed by UHPLC-MS/MS with a linear gradient of acetonitrile in 9min only. The simple and rapid method presented here was validated in compliance with authority guidelines and showed a limit of quantification at 5pg/mL and a linearity range from 5pg/mL to 300pg/mL. Good trueness (85.8-105%), repeatability (5.7-10.6% RSD) and intermediate precision (5.9-14.9% RSD) results were obtained. The method was then applied to real samples from eighteen volunteers collecting urines after single oral doses administration (1, 5 and 10μg) of clenbuterol-enriched yogurts.
Resumo:
Background: Plasmodium falciparum(P. falciparum) merozoite surfaceprotein 2 (MSP-2) is one of bloodstage proteins that are associated withprotection from malaria. MSP-2 consistsof a highly polymorphic centralrepeat region flanked by a dimorphicregion that defines the two allelicfamilies, 3D7 and FC27; N- and Cterminalregions are conserved domains.Long synthetic peptides (LSP)representing the two allelic familiesof MSP-2 and constant regions arerecognized by sera from donors livingin endemic areas; and specific antibodies(Abs) are associated with protectionand active in antibody dependentcellular inhibition (ADCI) in vitro.However, the fine specificity ofAb response to the two allelic familiesof MSP-2 is unknown. Methods: Peptidesrepresenting dimorphic regionof 3D7 and FC27 families and theirC-terminal (common fragment to thetwo families) termed 3D7-D (88 aa),FC27-D (48 aa) and C (40 aa) respectivelywere synthesized. Overlapping20 mer peptides covering dimorphicand constant regions of two familieswere also synthesized for epitopemapping. Human sera were obtainedfrom donors living in malaria endemicareas. SpecificDand CregionsAbs were purified from single or poolhuman sera. Sera from mice were obtainedafter immunization with thetwo families LSP mixture in three differentadjuvants: alhydrogel (Alum),Glucopyranosyl Lipid Adjuvant-Stableoil-in-water Emulsion (GLA-SE)and Virosome. For ADCI, P. falciparum(strain 3D7) parasite wasmaintained in culture at 0.5% parasitemiaand 4% hematocrit in air tightbox at love oxygen (2%) and 37 ºC.Results: We identified several epitopesfrom the dimorphic and constantregions of both families of MSP-2, inmice and humans (adults and children).In human, most recognizedepitopes were the same in differentendemic regions for each domain ofthe two families of MSP-2. In mice,the differential recognition of epitopewas depending on the strain of mouseand interestingly on the adjuvantused. GLA-SE and alum as adjuvantswere more often associated with therecognition of multiple epitopes thanvirosomes. Epitope-specific Abs recognizednative merozoites of P.falciparum and were active in ADCIto block development of parasite.Conclusion: The delineation of a limitednumber of epitopes could be exploitedto develop MSP-2 vaccinesactive on both allelic families ofMSP-2.
Resumo:
Amino acids have been reported to increase endogenous glucose production in normal human subjects during hyperinsulinemia: however, controversy exists as to whether insulin-mediated glucose disposal is inhibited under these conditions. The effect of an amino acid infusion on glucose oxidation rate has so far not been determined. Substrate oxidation rates, endogenous glucose production, and [13C]glucose synthesis from [13C]bicarbonate were measured in six normal human subjects during sequential infusions of exogenous glucose and exogenous glucose with (n = 5) or without (n = 5) exogenous amino acids. Amino acids increased endogenous glucose production by 84% and [13C]glucose synthesis by 235%. Glucose oxidation estimated from indirect calorimetry decreased slightly after amino acids, but glucose oxidation estimated from [13C]glucose-13CO2 data was increased by 14%. It is concluded that gluconeogenesis is the major pathway of amino acid degradation. During amino acid administration, indirect calorimetry underestimates the true rate of glucose oxidation, whereas glucose oxidation calculated from the 13C enrichment of expired CO2 during [U-13C]glucose infusion does not. A slight stimulation of glucose oxidation during amino acid infusion, concomitant with an increased plasma insulin concentration, indicates that amino acids do not inhibit glucose oxidation.
Resumo:
A louse survey based on samples of cut hair collected from floors of barbershops and beauty parlors was conducted in Belo Horizonte, Minas Gerais State, Brazil, from October 1984 to April 1985, as an alternative way to determine the prevalence of pediculosis capitis in the population. Of 475 samples examined for nits, nymphs, or adults of Pediculus capitis, 140 were infested (29.5%). A total of 58 lice and 3.553 nits were found in 33.632.9 g of hair collected, giving a ratio of 0.10 nit/g. Almost 29% of the nits were viable and capable of being transmitted after hatching. There was significant difference among the infestation rates by socioeconomic levels, and samples from barbershops with male customers were the most infested. based upon the number of haircuts in each sample, we estimated that 5 or 6% of the population might be infested by this species.
Resumo:
The distribution of the surface proteins of toxoplasma gondii radiodinated were studied using the phase separation technique and ability of binding in the phenyl-Sepharose column. Eight polypeptides with Mr 22 to 180 distributed exclusively in the detergent rich-phase, while six polypeptides with mol. wt. 15,000 to 76,000 distributed exclusively in the detergent poor-phase. Twopolypeptides with 15,000 and 70,000 distributed on both phase. All the polypeptides present in the detergent rich-phase binding in the phenyl-Sepharose column, and can be isolated in two peak according with their relative hydrophobicities.two polypeptides hydrophobic with Mr 60 and 66 recognized by human serum were isolated by the association of the two technique. Our result showed that the surface proteins of t. gondii present different degrees of hydrophobicity and that the use of hydrophobic interaction chromatography after Triton X-114 extraction may be an important isolation method of membrane proteins.
Resumo:
Furosemide (FD: Lasix) is a loop diuretic which strongly increases both urine flow and electrolyte urinary excretion. Healthy volunteers were administered 40 mg orally (dissolved in water) and concentrations of FD were determined in serum and urine for up to 6 h for eight subjects, who absorbed water at a rate of 400 ml/h. Quantification was performed by HPLC with fluorescence detection (excitation at 233 nm, emission at 389 nm) with a limit of detection of 5 ng/ml for a 300-microliters sample. The elution of FD was completed within 4 min using a gradient of acetonitrile concentration rising from 30 to 50% in 0.08 M phosphoric acid. The delay to the peak serum concentration ranged from 60 to 120 min. FD was still easily measurable in the sera from all subjects 6 h after administration. In urine, the excretion rates reached their maximum between 1 and 3 h. The total amount of FD excreted in the urine averaged 11.2 mg (range 7.6-14.0 mg), with a mean urine volume of 3024 ml (range 2620-3596 ml). Moreover, the urine density was lower than 1.010 (recommended as an upper limit in doping analysis to screen diuretics) only for 2 h. An additional volunteer was administered 40 mg of FD and his urine was collected over a longer period. FD was still detectable 48 h after intake. Gas chromatography-mass spectrometry with different types of ionization was used to confirm the occurrence of FD after permethylation of the extract. Negative-ion chemical ionization, with ammonia as reactant gas, was found to be the most sensitive method of detection.
Resumo:
The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.
Resumo:
Introduction: Coordination is a strategy chosen by the central nervous system to control the movements and maintain stability during gait. Coordinated multi-joint movements require a complex interaction between nervous outputs, biomechanical constraints, and pro-prioception. Quantitatively understanding and modeling gait coordination still remain a challenge. Surgeons lack a way to model and appreciate the coordination of patients before and after surgery of the lower limbs. Patients alter their gait patterns and their kinematic synergies when they walk faster or slower than normal speed to maintain their stability and minimize the energy cost of locomotion. The goal of this study was to provide a dynamical system approach to quantitatively describe human gait coordination and apply it to patients before and after total knee arthroplasty. Methods: A new method of quantitative analysis of interjoint coordination during gait was designed, providing a general model to capture the whole dynamics and showing the kinematic synergies at various walking speeds. The proposed model imposed a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion of each individual. An integration of different analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. Ten patients were studied using an ambulatory gait device (Physilog®). Each participant was asked to perform two walking trials of 30m long at 3 different speeds and to complete an EQ-5D questionnaire, a WOMAC and Knee Society Score. Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. The outcomes of the eight patients undergoing total knee arthroplasty, recorded pre-operatively and post-operatively at 6 weeks, 3 months, 6 months and 1 year were compared to 2 age-matched healthy subjects. Results: The new method provided coordination scores at various walking speeds, ranged between 0 and 10. It determined the overall coordination of the lower limbs as well as the contribution of each joint to the total coordination. The difference between the pre-operative and post-operative coordination values were correlated with the improvements of the subjective outcome scores. Although the study group was small, the results showed a new way to objectively quantify gait coordination of patients undergoing total knee arthroplasty, using only portable body-fixed sensors. Conclusion: A new method for objective gait coordination analysis has been developed with very encouraging results regarding the objective outcome of lower limb surgery.
Resumo:
The human Rad52 protein stimulates joint molecule formation by hRad51, a homologue of Escherichia coli RecA protein. Electron microscopic analysis of hRad52 shows that it self-associates to form ring structures with a diameter of approximately 10 nm. Each ring contains a hole at its centre. hRad52 binds to single and double-stranded DNA. In the ssDNA-hRad52 complexes, hRad52 was distributed along the length of the DNA, which exhibited a characteristic "beads on a string" appearance. At higher concentrations of hRad52, "super-rings" (approximately 30 nm) were observed and the ssDNA was collapsed upon itself. In contrast, in dsDNA-hRad52 complexes, some regions of the DNA remained protein-free while others, containing hRad52, interacted to form large protein-DNA networks. Saturating concentrations of hRad51 displaced hRad52 from ssDNA, whereas dsDNA-Rad52 complexes (networks) were more resistant to hRad51 invasion and nucleoprotein filament formation. When Rad52-Rad51-DNA complexes were probed with gold-conjugated hRad52 antibodies, the presence of globular hRad52 structures within the Rad51 nucleoprotein filament was observed. These data provide the first direct visualisation of protein-DNA complexes formed by the human Rad51 and Rad52 recombination/repair proteins.
Resumo:
The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5' and 3' transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.
Resumo:
We have identified C7orf11, which localizes to the nucleus and is expressed in fetal hair follicles, as the first disease gene for nonphotosensitive trichothiodystrophy (TTD). C7orf11 maps to chromosome 7p14, and the disease locus has been designated "TTDN1" (TTD nonphotosensitive 1). Mutations were found in patients with Amish brittle-hair syndrome and in other nonphotosensititive TTD cases with mental retardation and decreased fertility but not in patients with Sabinas syndrome or Pollitt syndrome. Therefore, genetic heterogeneity in nonphotosensitive TTD is a feature similar to that observed in photosensitive TTD, which is caused by mutations in transcription factor II H (TFIIH) subunit genes. Comparative immunofluorescence analysis, however, suggests that C7orf11 does not influence TFIIH directly. Given the absence of cutaneous photosensitivity in the patients with C7orf11 mutations, together with the protein's nuclear localization, C7orf11 may be involved in transcription but not DNA repair.
Resumo:
Besides CYP2B6, other polymorphic enzymes contribute to efavirenz (EFV) interindividual variability. This study was aimed at quantifying the impact of multiple alleles on EFV disposition. Plasma samples from 169 human immunodeficiency virus (HIV) patients characterized for CYP2B6, CYP2A6, and CYP3A4/5 allelic diversity were used to build up a population pharmacokinetic model using NONMEM (non-linear mixed effects modeling), the aim being to seek a general approach combining genetic and demographic covariates. Average clearance (CL) was 11.3 l/h with a 65% interindividual variability that was explained largely by CYP2B6 genetic variation (31%). CYP2A6 and CYP3A4 had a prominent influence on CL, mostly when CYP2B6 was impaired. Pharmacogenetics fully accounted for ethnicity, leaving body weight as the only significant demographic factor influencing CL. Square roots of the numbers of functional alleles best described the influence of each gene, without interaction. Functional genetic variations in both principal and accessory metabolic pathways demonstrate a joint impact on EFV disposition. Therefore, dosage adjustment in accordance with the type of polymorphism (CYP2B6, CYP2A6, or CYP3A4) is required in order to maintain EFV within the therapeutic target levels.
Resumo:
In this paper we examine whether variations in the level of public capital across Spain‟s Provinces affected productivity levels over the period 1996-2005. The analysis is motivated by contemporary urban economics theory, involving a production function for the competitive sector of the economy („industry‟) which includes the level of composite services derived from „service‟ firms under monopolistic competition. The outcome is potentially increasing returns to scale resulting from pecuniary externalities deriving from internal increasing returns in the monopolistic competition sector. We extend the production function by also making (log) labour efficiency a function of (log) total public capital stock and (log) human capital stock, leading to a simple and empirically tractable reduced form linking productivity level to density of employment, human capital and public capital stock. The model is further extended to include technological externalities or spillovers across provinces. Using panel data methodology, we find significant elasticities for total capital stock and for human capital stock, and a significant impact for employment density. The finding that the effect of public capital is significantly different from zero, indicating that it has a direct effect even after controlling for employment density, is contrary to some of the earlier research findings which leave the question of the impact of public capital unresolved.