915 resultados para horse, laminitis, glucose, insulin, GLUT, insulin resistance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To explore the hypothesis that sustained weight loss in severely obese patients may have benefits that are independent of their attained BMI. Research Methods and Procedures: We conducted a comparison of two weight-stable groups with BMI in the 30 to 35 kg/m2 range. Subjects (n = 79) were selected obese patients 3 years after laparoscopic adjustable gastric band surgery, and controls (n = 79) were obese patients seeking weight loss therapy. Subjects were selected in a de-identified manner from our database to best match the control group. A range of clinical, biochemical, and questionnaire measures were obtained to assess obesity-related health status Results: Subjects maintained a mean weight loss of 32.8 plusminus 18 kg after surgery. The weight loss subjects had significantly lower fasting plasma glucose, insulin, and triglyceride concentrations, along with higher high-density lipoprotein-cholesterol levels and better indirect measures of insulin sensitivity when compared with controls (p < 0.05 for all). In addition, aminotransferase levels, neutrophil counts, and globulin levels were also significantly lower in weight loss subjects. All differences in laboratory variables remained significant after controlling for BMI. The subjects also reported better health-related quality of life, fewer symptoms of depression, and greater satisfaction with their appearance than controls. Discussion: These findings suggest that the post-weight loss state conveys benefits that are greater than predicted by the attained BMI. These findings may have important implications regarding the expectations of weight loss therapy, and mechanisms for this effect should be carefully sought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on subsequent mRNA abundance of a subset of carbohydrate (CHO)- and fat-related genes. Seven subjects consumed either a low- (LOW; 0.7 g/kg body mass CHO) or high- (HIGH; 10 g/kg body mass CHO) CHO diet for 48 h after performing an exhaustive exercise bout to deplete muscle glycogen stores. After intervention, resting muscle and blood samples were taken. Muscle was analyzed for the gene abundances of GLUT4, glycogenin, pyruvate dehydrogenase kinase-4 (PDK-4), fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase I (CPT I), hormone-sensitive lipase (HSL), β-hydroxyacyl-CoA dehydrogenase (΄β-HAD), and uncoupling binding protein-3 (UCP3), and blood samples for glucose, insulin, and free fatty acid (FFA) concentrations. Glycogen-depleting exercise and HIGH-CHO resulted in a 300% increase in muscle glycogen content (P < 0.001) relative to the LOW-CHO condition. FFA concentrations were twofold higher after LOW- vs. HIGH-CHO (P < 0.05). The exercise-diet manipulation exerted a significant effect on transcription of all carbohydrate-related genes, with an increase in GLUT4 and glycogenin mRNA abundance and a reduction in PDK-4 transcription after HIGH-CHO (all P < 0.05). FAT/CD36 (P < 0.05) and UCP3 (P < 0.01) gene transcriptions were increased following LOW-CHO. We conclude that 1) there was a rapid capacity for a short-term exercise and diet intervention to exert coordinated changes in the mRNA transcription of metabolic related genes, and 2) genes involved in glucose regulation are increased following a high-carbohydrate diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enhanced metabolic efficiency for accelerating the recovery of fat mass (or catch-up fat) is a characteristic feature of body weight regulation after weight loss or growth retardation and is the outcome of an "adipose-specific" suppression of thermogenesis, i.e., a feedback control system in which signals from the depleted adipose tissue fat stores exert a suppressive effect on thermogenesis. Using a previously described rat model of semistarvation-refeeding in which catch-up fat results from suppressed thermogenesis per se, we report here that the gene expression of stearoyl-coenzyme A desaturase 1 (SCD1) is elevated in skeletal muscle after 2 wk of semistarvation and remains elevated in parallel to the phase of suppressed thermogenesis favoring catch-up fat during refeeding. These elevations in the SCD1 transcript are skeletal muscle specific and are associated with elevations in microsomal ^9 desaturase enzyme activity, in the ^9 desaturation index, and in the relative content of SCD1-derived monounsaturates in several lipid fractions extracted from skeletal muscle. An elevated skeletal muscle SCD1, by desaturating the products of de novo lipogenesis and diverting them away from mitochondrial oxidation, would inhibit substrate cycling between de novo lipogenesis and lipid oxidation, thereby leading to a state of suppressed thermogenesis that regulates the body’s fat stores.—Mainieri, D., Summermatter, S., Seydoux, J., Montani, J. P., Rusconi, S., Russell, A. P., Boss, O., Buchala, A. J., Dulloo, A. G. A role for skeletal muscle stearoyl-CoA desaturase 1 in control of thermogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective : To compare the prevalence of the Metabolic Syndrome (MetS) defined by four definitions and to determine which definition best identifies those at high cardiovascular disease (CVD) risk and with insulin resistance.

Methods : AusDiab is a population-based survey of 11,247 Australians. Participants had anthropometry, blood pressure, and fasting biochemistry. Ten-year CVD risk was calculated.

Results :
The prevalence of the MetS using the ATPIII, WHO, IDF, and EGIR definitions was 22.1% (95%Cl: 18.8, 25.4), 21.7% (19.0, 24.3), 30.7% (27.1, 34.3), and 13.4% (11.8, 14.9), respectively. Comparing those with to those without the MetS, the odds ratios (95%CI) for having a 10 year CVD risk ≥15% were 6.6 (5.4, 8.2), 5.5 (4.7, 6.5), 5.6 (4.8, 6.6), and 3.5 (3.0, 4.1), for the WHO, ATPIII, IDF, and EGIR definitions, respectively. The population attributable risk (PAR) of high CVD risk due to the MetS was highest for the IDF (23.4%). Insulin resistance was detected in 56.1, 69.7, 50.9, and 91.1% of those meeting the ATPIII, WHO, IDF, and EGIR definitions, respectively.

Conclusion :
The WHO definition was associated with the greatest CVD risk, but is not practical for clinical use. The higher PAR due to the IDF definition, with only slightly lower CVD risk than WHO, and clinical utility of the IDF definition, indicates that it may be a useful tool for CVD prevention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this dissertation was leptin and the leptin receptor, and the role of these genes (OB and OB-R) in the development of obesity and type 2 diabetes in humans and Psammomys obesus, a polygenic rodent model of obesity and type 2 diabetes. Studies in humans showed that circulating leptin concentrations were positively associated with adiposity, and independently associated with circulating insulin and triglyceride concentrations. Analysis of two leptin receptor sequence polymorphisms in a Caucasian Australian population and a population of Nauruan males, with very high prevalence rates of obesity, showed no associations between sequence variation within the OB-R gene and obesity- or diabetes-related phenotypic measures. In addition, these two OB-R polymorphisms were not associated with longitudinal changes in body mass or composition in either of the populations examined. A unique analysis of the effects of multiple gene defects in the Nauruan population, demonstrated that the presence of sequence alterations in both the OB and OB-R genes were associated with insulin resistance. Psammomys obesus is regarded as an excellent rodent model in which to study the development of obesity and type 2 diabetes in humans. Examination of circulating leptin concentrations in Psammomys revealed that, as in humans, leptin concentrations were associated with adiposity, and independently associated with circulating insulin concentrations. This animal model was utilised to examine expression of OB-R, and the regulation of expression of this gene after dietary manipulation. OB-R is known to have several isoforms, and in particular, OB-RA and OB-RB gene expression were examined. OB-RB is the main signalling isoform of the leptin receptors. It has a long intracellular domain and has previously been shown to play an important role in energy balance and body weight regulation in rodents and humans. OB-RA is a much shorter isoform of OB-R, and although it lacks the long intracellular domain necessary to activate the JAK/STAT pathway, OB-RA is also capable of signalling, although to a lesser degree than OB-RB. OB-RA is found to be expressed almost ubiquitously throughout the body, and this isoform may be involved in transport of leptin into the cell, although its role remains unclear. OB-RA and OB-RB were both found to be expressed in a large number of tissues in Psammomys obesus. Interestingly, obese Psammomys were found to have lower levels of expression of OB-RA and OB-RB in the hypothalamus, compared to lean animals. This finding raises the possibility that decreased leptin signalling in the brain of obese, hyperleptinemic Psammomys obesus may contribute to the leptin resistance previously described in this animal model. However, the primary defect is unclear, as alternatively, increased circulating leptin concentrations may lead to down-regulation of leptin receptors. The effect of fasting on leptin concentrations and gene expression of OB-RA and OB-RB was also examined. A 24-hour fast resulted in no change in body weight, but a reduction in circulating leptin concentrations, and an increase in hypothalamic OB-RB gene expression in lean Psammomys. In obese animals, fasting again did not alter body weight, but resulted in an increase in both circulating leptin concentrations and hypothalamic OB-RB gene expression. In the liver, fasting resulted in a large increase in OB-RA gene expression in both lean and obese animals. These results highlighted the fact that regulation of leptin receptor gene expression in polygenic models of obesity and type 2 diabetes is complex, and not solely under the control of circulating leptin concentrations. Sucrose-feeding is an established method of inducing obesity and type 2 diabetes in rodents, and this experimental paradigm was utilised to examine the effects of longer term perturbations of energy balance on the leptin signalling pathway in Psammomys obesus. Addition of a 5% sucrose solution to the diet of lean and obese Psammomys resulted in increased body weight in both groups of animals, however only obese Psammomys showed increased fat mass and the development of type 2 diabetes. The changes in body mass and composition with sucrose-feeding were accompanied by decreased circulating leptin concentrations in both groups of animals, as well as a range of changes in leptin receptor gene expression. Sucrose-feeding increased hypothalamic OB-RB gene expression in obese Psammomys only, while in the liver there was evidence of a reduction in OB-RA and OB-RB gene expression in both lean and obese animals. The direct effects of sucrose on the leptin signalling pathway are unclear, however it is possible to speculate that the effect of sucrose to decrease leptin concentrations may have been involved in the exacerbation of obesity and the development of type 2 diabetes in obese Psammomys, From these studies, it appears that sequence variation in the OB and OB-R genes is unlikely to be a major factor in the etiology of obesity in human populations. The ability to examine regulation of expression of these genes in Psammomys obesus, however, has demonstrated that the effects of nutritional modifications on leptin receptor gene expression need closer attention. The role of the OB and OB-R genes in metabolism and the development of type 2 diabetes also warrants further examination, with particular attention on the differential effects of dietary modifications on leptin receptor gene expression across a range of tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Insulin resistance associated with obesity and diabetes is ameliorated by specific overexpression of GLUT4 in skeletal muscle. The molecular mechanisms regulating skeletal muscle GLUT4 expression remain to be elucidated. The purpose of this study was to examine these mechanisms.

Research Design and Methods and Results: Here, we report that AMP-activated protein kinase (AMPK) regulates GLUT4 transcription through the histone deacetylase (HDAC)5 transcriptional repressor. Overexpression of HDAC5 represses GLUT4 reporter gene expression, and HDAC inhibition in human primary myotubes increases endogenous GLUT4 gene expression. In vitro kinase assays, site-directed mutagenesis, and site-specific phospho-antibodies establish AMPK as an HDAC5 kinase that targets S259 and S498. Constitutively active but not dominant-negative AMPK and 5-aminoimidazole-4-carboxamide-1-β-d-ribonucleoside (AICAR) treatment in human primary myotubes results in HDAC5 phosphorylation at S259 and S498, association with 14-3-3 isoforms, and H3 acetylation. This reduces HDAC5 association with the GLUT4 promoter, as assessed through chromatin immunoprecipitation assays and HDAC5 nuclear export, concomitant with increases in GLUT4 gene expression. Gene reporter assays also confirm that the HDAC5 S259 and S498 sites are required for AICAR induction of GLUT4 transcription.

Conclusions: These data reveal a signal transduction pathway linking cellular energy charge to gene transcription directed at restoring cellular and whole-body energy balance and provide new therapeutic targets for the treatment and management of insulin resistance and type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.      Skeletal muscle oxidative function and metabolic gene expression are co-ordinately downregulated in metabolic diseases such as insulin resistance, obesity and Type 2 diabetes. Altering skeletal muscle metabolic gene expression to favour enhanced energy expenditure is considered a potential therapy to combat these diseases.

2.      Histone deacetylases (HDACs) are chromatin-remodelling enzymes that repress gene expression. It has been shown that HDAC4 and 5 co-operatively regulate a number of genes involved in various aspects of metabolism. Understanding how HDACs are regulated provides insights into the mechanisms regulating skeletal muscle metabolic gene expression.

3.      Multiple kinases control phosphorylation-dependent nuclear export of HDACs, rendering them unable to repress transcription. We have found a major role for the AMP-activated protein kinase (AMPK) in response to energetic stress, yet metabolic gene expression is maintained in the absence of AMPK activity. Preliminary evidence suggests a potential role for protein kinase D, also a Class IIa HDAC kinase, in this response.

4.      The HDACs are also regulated by ubiquitin-mediated proteasomal degradation, although the exact mediators of this process have not been identified.

5.      Because HDACs appear to be critical regulators of skeletal muscle metabolic gene expression, HDAC inhibition could be an effective therapy to treat metabolic diseases.

6.      Together, these data show that HDAC4 and 5 are critical regulators of metabolic gene expression and that understanding their regulation could provide a number of points of intervention for therapies designed to treat metabolic diseases, such as insulin resistance, obesity and Type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity, strongly associated with the risk for coronary heart disease (CHD), is becoming increasingly prevalent. This study was designed to establish first whether systemic arterial compliance (SAC), an index of arterial function, is improved with weight loss and second, whether cardiovascular risk factors that improve with weight loss are reduced equally with lean meat or with an equivalent amount of plant protein in the diet. Thirty-six women, mostly overweight or obess, aged 40 ± 9 years, were allocated nonrandomly to a 16-week parallel-design trial of two equienergetic diets designed to lead to weight loss, with one arm of the study emphasizing red meat and the other soybeans as the major protein source. Body weight, waist and hip circumference, and plasma lipids, glucose, insulin, and leptin levels were measured, and SAC was calculated from ultrasound measurement of aortic flow velocity and aortic root driving pressure. Subjects lost weight (9% of body weight in 16 weeks) and showed decreased plasma total and low-density lipoprotein (LDL) cholesterol (12% and 14%, P < .0001, respectively), triacylglycerol (17%, P < .05), and leptin (24%, P < .01) concentrations. However, lipoprotein(a) [Lp(a)] levels did not change significantly. Mean arterial pressure (MAP) decreased 7% and SAC increased 28% (P < .001 for both). However, only the decrease in arterial pressure correlated significantly with the reduction in the waist to hip ratio (WHR), and the improvement in SAC correlated inversely with the blood pressure reduction (P < .001 for both). Further, weight loss and the metabolic benefits of weight loss occurred equally with the meat-based and plant-based diets. We conclude that moderate weight loss in women leads to a substantial reduction in the cardiovascular risk, including SAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The long-term effects of skipping breakfast on cardiometabolic health are not well understood.

Objective: The objective was to examine longitudinal associations of breakfast skipping in childhood and adulthood with cardiometabolic risk factors in adulthood.

Design:
In 1985, a national sample of 9–15-y-old Australian children reported whether they usually ate breakfast before school. During follow-up in 2004–2006, 2184 participants (26–36 y of age) completed a meal-frequency chart for the previous day. Skipping breakfast was defined as not eating between 0600 and 0900. Participants were classified into 4 groups: skipped breakfast in neither childhood nor adulthood (n = 1359), skipped breakfast only in childhood (n = 224), skipped breakfast only in adulthood (n = 515), and skipped breakfast in both childhood and adulthood (n = 86). Diet quality was assessed, waist circumference was measured, and blood samples were taken after a 12-h fast (n = 1730). Differences in mean waist circumference and blood glucose, insulin, and lipid concentrations were calculated by linear regression.

Results: After adjustment for age, sex, and sociodemographic and lifestyle factors, participants who skipped breakfast in both childhood and adulthood had a larger waist circumference (mean difference: 4.63 cm; 95% CI: 1.72, 7.53 cm) and higher fasting insulin (mean difference: 2.02 mU/L; 95% CI: 0.75, 3.29 mU/L), total cholesterol (mean difference: 0.40 mmol/L; 95% CI: 0.13, 0.68 mmol/L), and LDL cholesterol (mean difference: 0.40 mmol/L; 95% CI: 0.16, 0.64 mmol/L) concentrations than did those who ate breakfast at both time points. Additional adjustments for diet quality and waist circumference attenuated the associations with cardiometabolic variables, but the differences remained significant.

Conclusions: Skipping breakfast over a long period may have detrimental effects on cardiometabolic health. Promoting the benefits of eating breakfast could be a simple and important public health message.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TGF-Ý superfamily comprises a large group of proteins with many effects on muscle growth and maturation. The molecular regulation of skeletal muscle regeneration and metabolism in response to prominent superfamily members, myostatin and TGF-Ý1, were analysed, demonstrating the importance of this pathway in controlling how muscles grow and are regulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the association between the basal (rest) insulin-signaling proteins, Akt, and the Akt substrate AS160, metabolic risk factors, inflammatory markers and aerobic fitness, in middle-aged women with varying numbers of metabolic risk factors for type 2 diabetes. Methods: Sixteen women (n=16) aged 51.3±5.1 (mean ±SD) years provided muscle biopsies and blood samples at rest. In addition, anthropometric characteristics and aerobic power were assessed and the number of metabolic risk factors for each participant was determined (IDF criteria). Results: The mean number of metabolic risk factors was 1.6±1.2. Total Akt was negatively correlated with IL-1β (r = -0.45, p = 0.046), IL-6 (r = -0.44, p = 0.052) and TNF-α (r = -0.51, p = 0.025). Phosphorylated AS160 was positively correlated with HDL (r = 0.58, p= 0.024) and aerobic fitness (r = 0.51, p=0.047). Furthermore, a multiple regression analysis revealed that both HDL (t=2.5, p=0.032) and VO<sub>2peak</sub> (t=2.4, p=0.037) were better predictor for phosphorylated AS160 than TNF-α or IL-6 (p>0.05). Conclusions: Elevated inflammatory markers and increased metabolic risk factors may inhibit insulin-signaling protein phosphorylation in middle-aged women, thereby increasing insulin resistance under basal conditions. Furthermore, higher HDL and fitness levels are associated with an increase AS160 phosphorylation, which may in turn reduce insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines the role of dietary proteins on the maintenance of skeletal muscle mass in men who may or may not be insulin-resistant. It identified that dairy foods are powerful stimulators of muscle growth however this response is reduced during insulin-resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the relationship between circulating leptin concentrations, metabolic parameters, and lifestyle factors such as alcohol intake, physical activity level, smoking habits, and reproductive history, a cohort of 359 women was drawn from a population-based study conducted in Victoria, Australia. The parameters measured included body mass index (BMI); waist and hip circumference; blood pressure; and fasting glucose, insulin, triacylglycerol, cholesterol, and leptin concentrations. In addition, a self-administered questionnaire was used to assess reproductive history, physical activity level, alcohol intake, and smoking habits. Our results demonstrated that BMI, body weight, waist circumference, and hip circumference were all strongly correlated with circulating leptin concentrations in this population (r > 0.56, P < 0.001 in all cases). Waist/hip ratio, triacylglycerols, insulin, glucose, and cholesterol were also associated with leptin (P < 0.05), but there was no association between leptin and age, height, or blood pressure. When these associations were adjusted for BMI, age, glucose, and waist circumference were significantly associated with leptin. The lifestyle factors examined did not help to explain the observed variation in leptin concentrations between individuals when results were adjusted for degree of adiposity and age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current dietary recommendations advise reducing the intake of saturated fatty acids (SFAs) to reduce coronary heart disease (CHD) risk, but recent findings question the role of SFAs. This expert panel reviewed the evidence and reached the following conclusions: the evidence from epidemiologic, clinical, and mechanistic studies is consistent in finding that the risk of CHD is reduced when SFAs are replaced with polyunsaturated fatty acids (PUFAs). In populations who consume a Western diet, the replacement of 1% of energy from SFAs with PUFAs lowers LDL cholesterol and is likely to produce a reduction in CHD incidence of >2–3%. No clear benefit of substituting carbohydrates for SFAs has been shown, although there might be a benefit if the carbohydrate is unrefined and has a low glycemic index. Insufficient evidence exists to judge the effect on CHD risk of replacing SFAs with MUFAs. No clear association between SFA intake relative to refined carbohydrates and the risk of insulin resistance and diabetes has been shown. The effect of diet on a single biomarker is insufficient evidence to assess CHD risk. The combination of multiple biomarkers and the use of clinical endpoints could help substantiate the effects on CHD. Furthermore, the effect of particular foods on CHD cannot be predicted solely by their content of total SFAs because individual SFAs may have different cardiovascular effects and major SFA food sources contain other constituents that could influence CHD risk. Research is needed to clarify the role of SFAs compared with specific forms of carbohydrates in CHD risk and to compare specific foods with appropriate alternatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/objectives: Takeaway food consumption is positively associated with adiposity. Little is known about the associations with other cardio-metabolic risk factors. This study aimed to determine whether takeaway food consumption is associated with fasting glucose, insulin, lipids, homeostasis model assessment (HOMA) and blood pressure.

Subjects/methods:
A national sample of 1896, 26–36 year olds completed a questionnaire on socio-demographics, takeaway food consumption, physical activity and sedentary behaviour. Waist circumference and blood pressure were measured, and a fasting blood sample was taken. For this analysis, takeaway food consumption was dichotomised to once a week or less and twice a week or more. Linear regression was used to calculate differences in the adjusted mean values for fasting lipids, glucose, insulin, HOMA and blood pressure. Models were adjusted for age, employment status, leisure time physical activity and TV viewing.

Results:
Compared with women who ate takeaway once a week or less, women who ate takeaway twice a week or more had significantly higher adjusted mean fasting glucose (4.82 vs 4.88 mmol/l, respectively; P=0.045), higher HOMA scores (1.27 vs 1.40, respectively, P=0.034) and tended to have a higher mean fasting insulin (5.95 vs 6.45 mU/l, respectively, P=0.054). Similar associations were observed for men for fasting insulin and HOMA score, but the differences were not statistically significant. For both women and men adjustment for waist circumference attenuated the associations.

Conclusion: Consuming takeaway food at least twice a week was associated with cardio-metabolic risk factors in women but less so in men. The effect of takeaway food consumption was attenuated when adjusted for obesity.