919 resultados para hierarchical generalized linear model
Resumo:
Small pelagic fishes are particularly abundant in areas with high environmental variability (zones of coastal upwelling and areas of tidal mixing and river discharge), and because of this, their abundance suffers large inter-annual and inter-decadal fluctuations. In Portugal, the most important species in terms of landings are European sardine, Atlantic horse mackerel and Atlantic chub mackerel. Small pelagic fish landings account for 62.8 % of the total fish biomass and represent 32.7 % of the economical value of all catches. We have investigated trends in landings of these small pelagic fishes and detected the effects of environmental factors in this fishery. In order to explain the variability of landings of small pelagic fishes, we have used official landings (1965-2012) for trawling and purse seine fisheries and applied generalized linear models, using the North Atlantic Oscillation index (NAO) (annual and winter NAO index), sea surface temperature (SST), wind data (strength and North-South and East-West wind components) and rainfall, as explanatory variables. Regression analysis was used to describe the relationship between landings and SST. The models explained between 50.16 and 51.07 % of the variability of the LPUE, with the most important factors being winter NAO index, SST and wind strength. The LPUE of European sardine and Atlantic horse mackerel was negatively correlated with SST, and LPUE of Atlantic chub mackerel was positively correlated with SST. The use of landings of three important species of small pelagic fishes allowed the detection of variations in landings associated with changes in sea water temperature and NAO index.
Resumo:
Endemic zoonotic diseases remain a serious but poorly recognised problem in affected communities in developing countries. Despite the overall burden of zoonoses on human and animal health, information about their impacts in endemic settings is lacking and most of these diseases are continuously being neglected. The non-specific clinical presentation of these diseases has been identified as a major challenge in their identification (even with good laboratory diagnosis), and control. The signs and symptoms in animals and humans respectively, are easily confused with other non-zoonotic diseases, leading to widespread misdiagnosis in areas where diagnostic capacity is limited. The communities that are mostly affected by these diseases live in close proximity with their animals which they depend on for livelihood, which further complicates the understanding of the epidemiology of zoonoses. This thesis reviewed the pattern of reporting of zoonotic pathogens that cause febrile illness in malaria endemic countries, and evaluates the recognition of animal associations among other risk factors in the transmission and management of zoonoses. The findings of the review chapter were further investigated through a laboratory study of risk factors for bovine leptospirosis, and exposure patterns of livestock coxiellosis in the subsequent chapters. A review was undertaken on 840 articles that were part of a bigger review of zoonotic pathogens that cause human fever. The review process involves three main steps: filtering and reference classification, identification of abstracts that describe risk factors, and data extraction and summary analysis of data. Abstracts of the 840 references were transferred into a Microsoft excel spread sheet, where several subsets of abstracts were generated using excel filters and text searches to classify the content of each abstract. Data was then extracted and summarised to describe geographical patterns of the pathogens reported, and determine the frequency animal related risk factors were considered among studies that investigated risk factors for zoonotic pathogen transmission. Subsequently, a seroprevalence study of bovine leptospirosis in northern Tanzania was undertaken in the second chapter of this thesis. The study involved screening of serum samples, which were obtained from an abattoir survey and cross-sectional study (Bacterial Zoonoses Project), for antibodies against Leptospira serovar Hardjo. The data were analysed using generalised linear mixed models (GLMMs), to identify risk factors for cattle infection. The final chapter was the analysis of Q fever data, which were also obtained from the Bacterial Zoonoses Project, to determine exposure patterns across livestock species using generalized linear mixed models (GLMMs). Leptospira spp. (10.8%, 90/840) and Rickettsia spp. (10.7%, 86/840) were identified as the most frequently reported zoonotic pathogens that cause febrile illness, while Rabies virus (0.4%, 3/840) and Francisella spp. (0.1%, 1/840) were least reported, across malaria endemic countries. The majority of the pathogens were reported in Asia, and the frequency of reporting seems to be higher in areas where outbreaks are mostly reported. It was also observed that animal related risk factors are not often considered among other risk factors for zoonotic pathogens that cause human fever in malaria endemic countries. The seroprevalence study indicated that Leptospira serovar Hardjo is widespread in cattle population in northern Tanzania, and animal husbandry systems and age are the two most important risk factors that influence seroprevalence. Cattle in the pastoral systems and adult cattle were significantly more likely to be seropositive compared to non-pastoral and young animals respectively, while there was no significant effect of cattle breed or sex. Exposure patterns of Coxiella burnetii appear different for each livestock species. While most risk factors were identified for goats (such as animal husbandry systems, age and sex) and sheep (animal husbandry systems and sex), there were none for cattle. In addition, there was no evidence of a significant influence of mixed livestock-keeping on animal coxiellosis. Zoonotic agents that cause human fever are common in developing countries. The role of animals in the transmission of zoonotic pathogens that cause febrile illness is not fully recognised and appreciated. Since Leptospira spp. and C. burnetii are among the most frequently reported pathogens that cause human fever across malaria endemic countries, and are also prevalent in livestock population, control and preventive measures that recognise animals as source of infection would be very important especially in livestock-keeping communities where people live in close proximity with their animals.
Resumo:
Distribution models are used increasingly for species conservation assessments over extensive areas, but the spatial resolution of the modeled data and, consequently, of the predictions generated directly from these models are usually too coarse for local conservation applications. Comprehensive distribution data at finer spatial resolution, however, require a level of sampling that is impractical for most species and regions. Models can be downscaled to predict distribution at finer resolutions, but this increases uncertainty because the predictive ability of models is not necessarily consistent beyond their original scale. We analyzed the performance of downscaled, previously published models of environmental favorability (a generalized linear modeling technique) for a restricted endemic insectivore, the Iberian desman (Galemys pyrenaicus), and a more widespread carnivore, the Eurasian otter ( Lutra lutra), in the Iberian Peninsula. The models, built from presence–absence data at 10 × 10 km resolution, were extrapolated to a resolution 100 times finer (1 × 1 km). We compared downscaled predictions of environmental quality for the two species with published data on local observations and on important conservation sites proposed by experts. Predictions were significantly related to observed presence or absence of species and to expert selection of sampling sites and important conservation sites. Our results suggest the potential usefulness of downscaled projections of environmental quality as a proxy for expensive and time-consuming field studies when the field studies are not feasible. This method may be valid for other similar species if coarse-resolution distribution data are available to define high-quality areas at a scale that is practical for the application of concrete conservation measures
Resumo:
The Opuntia ficus-indica (L.) Miller is a species from the Cactaceae family with the center of origin and domestication in central Mexico. This species introduction in the Iberia Peninsula occurred, probably, by the end of the 15th century, after the discovery of America, spreading later throughout the Mediterranean basin. In Portugal, O. ficus-indica is located, usually, with a typical ruderal behavior, at the edge of roads and paths. In Portugal, as in other Mediterranean regions, inlands areas are under severe draught during extensive summers, in particular, and global warming is expected to affect them deeply in the near future. O. ficus-indica, by its morpho-physiological characteristics and multiple economic uses, represent an alternative crop for those regions. Sixteen Portuguese O. ficus indica ecotypes and two ‘Italian’ cultivars ("Gialla" and "Bianca") were evaluated for plant vigor and biomass production, by nondestructive methods, in the two years following planting. Biomass production and plant vigor were measured by estimating cladode number, cladode area and fresh weight per plant. Linear models to predict the area of cladodes and fresh weight per plant were previously established using a biometric analysis of 180 cladodes. It was not possible to establish an accurate linear model for dry matter using non-destructive estimation. Significant differences were found among populations in the studied biomass-related parameters, and different groups were unfolded. A group of four Portuguese ecotypes outperformed in terms of biomass production, comparable with the “Gialla” cultivar. This group could be used to start a breeding program with the objective of deploy material for animal feeding, biomass and fruit production. Nevertheless, the ‘Gialla’ cultivar showed the best performance, achieving the highest biomass related parameters, not surprisingly for it is an improved plant material.
Resumo:
In recent years, haying has extended to Iberian Mediterranean dry grasslands potentially threatening grassland birds. We evaluate the between and within-year effects of haying on grassland birds in Alentejo region, Portugal. Our main goals were: (1) to investigate variations on bird abundance and species richness in the fields hayed, with respect to past haying events occurred in a field and its surroundings and (2) to investigate the shifts in bird abundance, species richness and spatial dynamics resulting from haying a field and its surrounding area in a given year. We conducted grassland bird censuses during the breeding season through point counts from 2012 to 2015. The relationship between bird abundance/richness and past haying events was investigated using Generalized Linear Models whereas within-year effects of haying were analysed using Generalized Additive Models. Bird abundance in a field was positively related with the surface hayed in the vicinity of that field in the previous year. However, contrasting yearly effects were found for non passerines. Also, some species prefer fields with less haying events or surface hayed, whereas others occur mostly in fields frequently managed for haying. Haying a field leads, in the short term, to its abandonment by birds, and thus to a decrease in bird abundance and, for some species, to spatial concentration in surrounding fields offering suitable habitat. We conclude that within-year effects of haying have higher impact on grassland birds than between-year effects. Maintaining haying at low levels by rotating haying yearly through the different fields in each farm and using partial haying may be an adequate way to ensure an effective management of grassland bird populations.
Resumo:
The Belt and Road Initiative (BRI) is a project launched by the Chinese Government whose main goal is to connect more than 65 countries in Asia, Europe, Africa and Oceania developing infrastructures and facilities. To support the prevention or mitigation of landslide hazards, which may affect the mainland infrastructures of BRI, a landslide susceptibility analysis in the countries involved has been carried out. Due to the large study area, the analysis has been carried out using a multi-scale approach which consists of mapping susceptibility firstly at continental scale, and then at national scale. The study area selected for the continental assessment is the south-Asia, where a pixel-based landslide susceptibility map has been carried out using the Weight of Evidence method and validated by Receiving Operating Characteristic (ROC) curves. Then, we selected the regions of west Tajikistan and north-east India to be investigated at national scale. Data scarcity is a common condition for many countries involved into the Initiative. Therefore in addition to the landslide susceptibility assessment of west Tajikistan, which has been conducted using a Generalized Additive Model and validated by ROC curves, we have examined, in the same study area, the effect of incomplete landslide dataset on the prediction capacity of statistical models. The entire PhD research activity has been conducted using only open data and open-source software. In this context, to support the analysis of the last years an open-source plugin for QGIS has been implemented. The SZ-tool allows the user to make susceptibility assessments from the data preprocessing, susceptibility mapping, to the final classification. All the output data of the analysis conducted are freely available and downloadable. This text describes the research activity of the last three years. Each chapter reports the text of the articles published in international scientific journal during the PhD.
Resumo:
In recent years, there has been increasing attention to lighting energy efficiency, due to economics - lower energy costs - and environmental reasons - maninduced climate change. Driven by strict energy-efficiency requirements, the lighting industry started to replace the traditional lamps with LED lighting solutions, ignoring the limits of their maintenance and recycling. Faced with an increasing global population, rising resource consumption and associated negative environmental impacts, shifting from a traditional economic linear model to a more sustainable paradigm of growth is now becoming increasingly urgent. Whereas the topic of circular economy has been widely investigated in literature in the past, little attention has been reserved for the different evaluation tools to assess and improve product circularity and how companies can become more resource-efficient. Hence, the present thesis investigates the implementation of a circular economy in the lighting industry through the use of circularity indicators and ecodesign strategies. Concerning the real luminaire products, the role of the luminaire in the circular economy and recycling industry is explored, highlighting the limits of their End-of-life process. The main conclusions of the thesis reveal the significance of initial product development, reuse, remanufacturing and repair strategies in a transition towards a circular economy.
Resumo:
Composition is a practice of key importance in software engineering. When real-time applications are composed it is necessary that their timing properties (such as meeting the deadlines) are guaranteed. The composition is performed by establishing an interface between the application and the physical platform. Such an interface does typically contain information about the amount of computing capacity needed by the application. In multiprocessor platforms, the interface should also present information about the degree of parallelism. Recently there have been quite a few interface proposals. However, they are either too complex to be handled or too pessimistic.In this paper we propose the Generalized Multiprocessor Periodic Resource model (GMPR) that is strictly superior to the MPR model without requiring a too detailed description. We describe a method to generate the interface from the application specification. All these methods have been implemented in Matlab routines that are publicly available.
Resumo:
Hierarchical linear growth model (HLGM), as a flexible and powerful analytic method, has played an increased important role in psychology, public health and medical sciences in recent decades. Mostly, researchers who conduct HLGM are interested in the treatment effect on individual trajectories, which can be indicated by the cross-level interaction effects. However, the statistical hypothesis test for the effect of cross-level interaction in HLGM only show us whether there is a significant group difference in the average rate of change, rate of acceleration or higher polynomial effect; it fails to convey information about the magnitude of the difference between the group trajectories at specific time point. Thus, reporting and interpreting effect sizes have been increased emphases in HLGM in recent years, due to the limitations and increased criticisms for statistical hypothesis testing. However, most researchers fail to report these model-implied effect sizes for group trajectories comparison and their corresponding confidence intervals in HLGM analysis, since lack of appropriate and standard functions to estimate effect sizes associated with the model-implied difference between grouping trajectories in HLGM, and also lack of computing packages in the popular statistical software to automatically calculate them. ^ The present project is the first to establish the appropriate computing functions to assess the standard difference between grouping trajectories in HLGM. We proposed the two functions to estimate effect sizes on model-based grouping trajectories difference at specific time, we also suggested the robust effect sizes to reduce the bias of estimated effect sizes. Then, we applied the proposed functions to estimate the population effect sizes (d ) and robust effect sizes (du) on the cross-level interaction in HLGM by using the three simulated datasets, and also we compared the three methods of constructing confidence intervals around d and du recommended the best one for application. At the end, we constructed 95% confidence intervals with the suitable method for the effect sizes what we obtained with the three simulated datasets. ^ The effect sizes between grouping trajectories for the three simulated longitudinal datasets indicated that even though the statistical hypothesis test shows no significant difference between grouping trajectories, effect sizes between these grouping trajectories can still be large at some time points. Therefore, effect sizes between grouping trajectories in HLGM analysis provide us additional and meaningful information to assess group effect on individual trajectories. In addition, we also compared the three methods to construct 95% confident intervals around corresponding effect sizes in this project, which handled with the uncertainty of effect sizes to population parameter. We suggested the noncentral t-distribution based method when the assumptions held, and the bootstrap bias-corrected and accelerated method when the assumptions are not met.^
Resumo:
Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Invariance under non-linear Ŵ∞ algebra is shown for the two-boson Liouville type of model and its algebraic generalizations, the extended conformal Toda models. The realization of the corresponding generators in terms of two boson currents within KP hierarchy is presented.
Resumo:
In this paper, we propose a random intercept Poisson model in which the random effect is assumed to follow a generalized log-gamma (GLG) distribution. This random effect accommodates (or captures) the overdispersion in the counts and induces within-cluster correlation. We derive the first two moments for the marginal distribution as well as the intraclass correlation. Even though numerical integration methods are, in general, required for deriving the marginal models, we obtain the multivariate negative binomial model from a particular parameter setting of the hierarchical model. An iterative process is derived for obtaining the maximum likelihood estimates for the parameters in the multivariate negative binomial model. Residual analysis is proposed and two applications with real data are given for illustration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Despite long-standing calls to disseminate evidence-based treatments for generalized anxiety (GAD), modest progress has been made in the study of how such treatments should be implemented. The primary objective of this study was to test three competing strategies on how to implement a cognitive behavioral treatment (CBT) for out-patients with GAD (i.e., comparison of one compensation vs. two capitalization models). METHODS: For our three-arm, single-blinded, randomized controlled trial (implementation of CBT for GAD [IMPLEMENT]), we recruited adults with GAD using advertisements in high-circulation newspapers to participate in a 14-session cognitive behavioral treatment (Mastery of your Anxiety and Worry, MAW-packet). We randomly assigned eligible patients using a full randomization procedure (1:1:1) to three different conditions of implementation: adherence priming (compensation model), which had a systematized focus on patients' individual GAD symptoms and how to compensate for these symptoms within the MAW-packet, and resource priming and supportive resource priming (capitalization model), which had systematized focuses on patients' strengths and abilities and how these strengths can be capitalized within the same packet. In the intention-to-treat population an outcome composite of primary and secondary symptoms-related self-report questionnaires was analyzed based on a hierarchical linear growth model from intake to 6-month follow-up assessment. This trial is registered at ClinicalTrials.gov (identifier: NCT02039193) and is closed to new participants. FINDINGS: From June 2012 to Nov. 2014, from 411 participants that were screened, 57 eligible participants were recruited and randomly assigned to three conditions. Forty-nine patients (86%) provided outcome data at post-assessment (14% dropout rate). All three conditions showed a highly significant reduction of symptoms over time. However, compared with the adherence priming condition, both resource priming conditions indicated faster symptom reduction. The observer ratings of a sub-sample of recorded videos (n = 100) showed that the therapists in the resource priming conditions conducted more strength-oriented interventions in comparison with the adherence priming condition. No patients died or attempted suicide. INTERPRETATION: To our knowledge, this is the first trial that focuses on capitalization and compensation models during the implementation of one prescriptive treatment packet for GAD. We have shown that GAD related symptoms were significantly faster reduced by the resource priming conditions, although the limitations of our study included a well-educated population. If replicated, our results suggest that therapists who implement a mental health treatment for GAD might profit from a systematized focus on capitalization models. FUNDING: Swiss Science National Foundation (SNSF-Nr. PZ00P1_136937/1) awarded to CF. KEYWORDS: Cognitive behavioral therapy; Evidence-based treatment; Implementation strategies; Randomized controlled trial