971 resultados para head movement
Resumo:
A first step in interpreting the wide variation in trace gas concentrations measured over time at a given site is to classify the data according to the prevailing weather conditions. In order to classify measurements made during two intensive field campaigns at Mace Head, on the west coast of Ireland, an objective method of assigning data to different weather types has been developed. Air-mass back trajectories calculated using winds from ECMWF analyses, arriving at the site in 1995–1997, were allocated to clusters based on a statistical analysis of the latitude, longitude and pressure of the trajectory at 12 h intervals over 5 days. The robustness of the analysis was assessed by using an ensemble of back trajectories calculated for four points around Mace Head. Separate analyses were made for each of the 3 years, and for four 3-month periods. The use of these clusters in classifying ground-based ozone measurements at Mace Head is described, including the need to exclude data which have been influenced by local perturbations to the regional flow pattern, for example, by sea breezes. Even with a limited data set, based on 2 months of intensive field measurements in 1996 and 1997, there are statistically significant differences in ozone concentrations in air from the different clusters. The limitations of this type of analysis for classification and interpretation of ground-based chemistry measurements are discussed.
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling cyanobacterial behaviour in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes, reservoirs and rivers. A new deterministic–mathematical model was developed, which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the major factors that affect the cyanobacterial bloom formation in rivers including light, nutrients and temperature. A parameter sensitivity analysis using a one-at-a-time approach was carried out. There were two objectives of the sensitivity analysis presented in this paper: to identify the key parameters controlling the growth and movement patterns of cyanobacteria and to provide a means for model validation. The result of the analysis suggested that maximum growth rate and day length period were the most significant parameters in determining the population growth and colony depth, respectively.
Resumo:
The main objective is to generate kinematic models for the head and neck movements. The motivation comes from our study of individuals with quadriplegia and the need to design rehabilitation aiding devices such as robots and teletheses that can be controlled by head-neck movements. It is then necessary to develop mathematical models for the head and neck movements. Two identification methods have been applied to study the kinematics of head-neck movements of able-body as well as neck-injured subjects. In particular, sagittal plane movements are well modeled by a planar two-revolute-joint linkage. In fact, the motion in joint space seems to indicate that sagittal plane movements may be classified as a single DOF motion. Finally, a spatial three-revolute-joint system has been employed to model 3D head-neck movements.
Resumo:
Researchers in the rehabilitation engineering community have been designing and developing a variety of passive/active devices to help persons with limited upper extremity function to perform essential daily manipulations. Devices range from low-end tools such as head/mouth sticks to sophisticated robots using vision and speech input. While almost all of the high-end equipment developed to date relies on visual feedback alone to guide the user providing no tactile or proprioceptive cues, the “low-tech” head/mouth sticks deliver better “feel” because of the inherent force feedback through physical contact with the user's body. However, the disadvantage of a conventional head/mouth stick is that it can only function in a limited workspace and the performance is limited by the user's strength. It therefore seems reasonable to attempt to develop a system that exploits the advantages of the two approaches: the power and flexibility of robotic systems with the sensory feedback of a headstick. The system presented in this paper reflects the design philosophy stated above. This system contains a pair of master-slave robots with the master being operated by the user's head and the slave acting as a telestick. Described in this paper are the design, control strategies, implementation and performance evaluation of the head-controlled force-reflecting telestick system.
Resumo:
For individuals with upper-extremity motor disabilities, the head-stick is a simple and intuitive means of performing manipulations because it provides direct proprioceptive information to the user. Through practice and use of inherent proprioceptive cues, users may become quite adept at using the head-stick for a number of different tasks. The traditional head-stick is limited, however, to the user's achievable range of head motion and force generation, which may be insufficient for many tasks. The authors describe an interface to a robot system which emulates the proprioceptive qualities of a traditional head-stick while also allowing for augmented end-effector ranges of force and motion. The design and implementation of the system in terms of coordinate transforms, bilateral telemanipulator architecture, safety systems, and system identification of the master is described, in addition to preliminary evaluation results.
Resumo:
This paper presents a review of the design and development of the Yorick series of active stereo camera platforms and their integration into real-time closed loop active vision systems, whose applications span surveillance, navigation of autonomously guided vehicles (AGVs), and inspection tasks for teleoperation, including immersive visual telepresence. The mechatronic approach adopted for the design of the first system, including head/eye platform, local controller, vision engine, gaze controller and system integration, proved to be very successful. The design team comprised researchers with experience in parallel computing, robot control, mechanical design and machine vision. The success of the project has generated sufficient interest to sanction a number of revisions of the original head design, including the design of a lightweight compact head for use on a robot arm, and the further development of a robot head to look specifically at increasing visual resolution for visual telepresence. The controller and vision processing engines have also been upgraded, to include the control of robot heads on mobile platforms and control of vergence through tracking of an operator's eye movement. This paper details the hardware development of the different active vision/telepresence systems.
Resumo:
This paper describes the design, implementation and testing of a high speed controlled stereo “head/eye” platform which facilitates the rapid redirection of gaze in response to visual input. It details the mechanical device, which is based around geared DC motors, and describes hardware aspects of the controller and vision system, which are implemented on a reconfigurable network of general purpose parallel processors. The servo-controller is described in detail and higher level gaze and vision constructs outlined. The paper gives performance figures gained both from mechanical tests on the platform alone, and from closed loop tests on the entire system using visual feedback from a feature detector.
Resumo:
People with disabilities such as quadriplegia can use mouth-sticks and head-sticks as extension devices to perform desired manipulations. These extensions provide extended proprioception which allows users to directly feel forces and other perceptual cues such as texture present at the tip of the mouth-stick. Such devices are effective for two principle reasons: because of their close contact with the user's tactile and proprioceptive sensing abilities; and because they tend to be lightweight and very stiff, and can thus convey tactile and kinesthetic information with high-bandwidth. Unfortunately, traditional mouth-sticks and head-sticks are limited in workspace and in the mechanical power that can be transferred because of user mobility and strength limitations. We describe an alternative implementation of the head-stick device using the idea of a virtual head-stick: a head-controlled bilateral force-reflecting telerobot. In this system the end-effector of the slave robot moves as if it were at the tip of an imaginary extension of the user's head. The design goal is for the system is to have the same intuitive operation and extended proprioception as a regular mouth-stick effector but with augmentation of workspace volume and mechanical power. The input is through a specially modified six DOF master robot (a PerForceTM hand-controller) whose joints can be back-driven to apply forces at the user's head. The manipulation tasks in the environment are performed by a six degree-of-freedom slave robot (the Zebra-ZEROTM) with a built-in force sensor. We describe the prototype hardware/software implementation of the system, control system design, safety/disability issues, and initial evaluation tasks.
Resumo:
The elderly tutor La Sale's didactic treatise for his charges (dated 1451) includes an eye-witness account of the siege of Anjou-held Naples by the Aragonese in 1438. It narrates the accidental death (or miracle, depending on the perspective of the chroniclers) of the infante Pedro of Castille, brother of King Alfonso the Magnanimous of Aragon. This article explores how "La Sale", an adapted version of the Middle French translation of Valerius Maximus's 'Facta et dicta memorabilia', frames and skews the anecdote towards an exploration of the reliability and authority of the tutor-narrator.
Resumo:
Root-knot nematodes (Meloidogyne spp.) are the most significant plant-parasitic nematodes that damage many crops all over the world. The free-living second stage juvenile (J2) is the infective stage that enters plants. The J2s move in the soil water films to reach the root zone. The bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes, is cosmopolitan, frequently encountered in many climates and environmental conditions and is considered promising for the control of Meloidogyne spp. The infection potential of P. penetrans to nematodes is well studied but not the attachment effects on the movement of root-knot nematode juveniles, image analysis techniques were used to characterize movement of individual juveniles with or without P. penetrans spores attached to their cuticles. Methods include the study of nematode locomotion based on (a) the centroid body point, (b) shape analysis and (c) image stack analysis. All methods proved that individual J2s without P. penetrans spores attached have a sinusoidal forward movement compared with those encumbered with spores. From these separate analytical studies of encumbered and unencumbered nematodes, it was possible to demonstrate how the presence of P. penetrans spores on a nematode body disrupted the normal movement of the nematode.