934 resultados para groundwater hydrology
Resumo:
Many of our surface waters go underground to the aquifer via sinkholes (or swallets) and the water is then called groundwater. Most of us rely on groundwater for our drinking water. Springs are where the groundwater comes to the surface to once again become surface waters. Below is a map of the springs and swallets of the Lower Santa Fe River.
Resumo:
This data report includes the results from Alachua County Environmental Protection Department’s inspections of wastewater treatment plants (WWTP) within Alachua County during the 2006 and 2007 fiscal years (October 2005 – September 2007). Groundwater monitoring data provided to the Florida Department of Environmental Protection Department by the WWTP operators is included for those treatment plants that are required to submit this information (PDF has 44 pages.)
Resumo:
Retrofit activities, such as improving hydrology and incorporating more advanced treatment methods into systems where feasible, may improve phosphorus (P) removal performance of current Best Management Practices (BMPs). In the recent past, chemical treatment systems such as chemical dosing and the use of adsorptive media have become more prevalent for treating stormwater and hold promise for improving the P removal performance of stormwater treatment BMPs (Bachand et al., 2005; Patel et al., 2005). Our primary objective for this project has been to investigate whether adsorptive media hold any promise for improving P removal performance of stormwater basins and treatment wetlands at Lake Tahoe.... (PDF contains 99 pages)
Resumo:
[ES]En la presente tesis se ha estudiado el impacto de diferentes fertilizantes y pesticidas utilizados en la Zona Vulnerable de Vitoria-Gasteiz en la calidad del suelo y las aguas de dicha zona. Se ha podido constatar que hoy en día siguen lixiviándose cantidades significativas de nitratos y pesticidas (e.g., etofumesato y difenoconazol) a las aguas de la Zona Vulnerable, durante el cultivo de remolacha azucarera (Beta vulgaris L.), muy característico de la zona de estudio. Se comprobó que el alto contenido en nitratos de las aguas subterráneas en la Zona Vulnerable es mitigado, al menos en parte, por la acción de la actividad microbiana desnitrificante que alberga la zona riparia del humedal de Salburua. Dicho proceso, sin embargo, supone la emisión a la atmósfera de importantes cantidades de gases de efecto invernadero (CO2 y N2O), y puede verse afectado negativamente por la presencia de pesticidas (e.g., deltametrina) en el medio.Por otra parte, hemos observado que diversos pesticidas (deltametrina, etofumesato, difenoconazol) aplicados en concentraciones similares a las dosis de aplicación en campo inducen cambios, de carácter limitado y transitorio, en las comunidades microbianas edáficas, siendo más significativos en el caso del fungicida difenoconazol. El efecto de los pesticidas fue más acusado a medida que aumentaba su concentración en el medio. Finalmente, encontramos que la aplicación de abonos orgánicos (avicompost), en lugar de los fertilizantes sintéticos tradicionales (NPK), además de mejorar la degradación de los pesticidas y disminuir el impacto de éstos sobre la calidad del suelo, podría ayudar a reducir las pérdidas de nitratos por lixiviación.
Resumo:
Village tanks are put to a wide range of uses by the rural communities that depend on them for their survival. As the primacy of irrigation has decreased under these tanks due to a variety of climatic and economic reasons there is a need to reevaluate their use for other productive functions. The research presented in this paper is part of a programme investigating the potential to improve the management of living aquatic resources in order to bring benefits to the most marginal groups identified in upper watershed areas. Based on an improved typology of seasonal tanks, the seasonal changes and dynamics of various water quality parameters indicative of nutrient status and fisheries carrying capacity are compared over a period of one year. Indicators of Net (Primary) Productivity (NP): Rates of Dissolved Oxygen (DO) change, Total Suspended Solids (TSS): Total Suspended Volatile solids (TVSS) ratios are the parameters of principle interest. Based on these results a comparative analysis is made on two classes of ‘seasonal’ and ‘semi-seasonal’ tanks. Results indicate a broad correlation in each of these parameters with seasonal trends in tank hydrology. Highest productivity levels are associated with periods of declining water storage, whilst the lowest levels are associated with the periods of maximum water storage shortly after the NW monsoon. This variation is primarily attributed to dilution effects associated with depth and storage area. During the yala period, encroachment of the surface layer by several species of aquatic macrophyte also has progressively negative impacts on productivity. The most seasonal tanks show wider extremes in seasonal nutrient dynamics, overall, with less favourable conditions than the ‘semi-seasonal’ tanks. Never the less all the tanks can be considered as being highly productive with NP levels comparable to fertilised pond systems for much of the year. This indicates that nutrient status is not likely to be amongst the most important constraints to enhancing fish production. Other potential management improvements based on these results are discussed. [PDF contains 19 pages]
Resumo:
The hydrological response of a catchment to rainfall on different timescales is result of a complex system involving a range of physical processes which may operate simultaneously and have different spatial and temporal influences. This paper presents the analysis of streamflow response of a small humid-temperate catchment (Aixola, 4.8 km(2)) in the Basque Country on different timescales and discusses the role of the controlling factors. Firstly, daily time series analysis was used to establish a hypothesis on the general functioning of the catchment through the relationship between precipitation and discharge on an annual and multiannual scale (2003-2008). Second, rainfall-runoff relationships and relationships among several hydrological variables, including catchment antecedent conditions, were explored at the event scale (222 events) to check and improve the hypothesis. Finally, the evolution of electrical conductivity (EC) during some of the monitored storm events (28 events) was examined to identify the time origin of waters. Quick response of the catchment to almost all the rainfall events as well as a considerable regulation capacity was deduced from the correlation and spectral analyses. These results agree with runoff event scale data analysis; however, the event analysis revealed the non-linearity of the system, as antecedent conditions play a significant role in this catchment. Further, analysis at the event scale made possible to clarify factors controlling (precipitation, precipitation intensity and initial discharge) the different aspects of the runoff response (runoff coefficient and discharge increase) for this catchment. Finally, the evolution of EC of the waters enabled the time origin (event or pre-event waters) of the quickflow to be established; specifically, the conductivity showed that pre-event waters usually represent a high percentage of the total discharge during runoff peaks. The importance of soil waters in the catchment is being studied more deeply.
Resumo:
Aquaculture depends largely upon a good aquatic environment. The quality of the aquatic medium determines success to a large extent in aquaculture. The medium is particularly vulnerable to excessive abstraction (i.e surface or groundwater) and contamination from a range of sources (industrial, agricultural or domestic) as well as risks of self-pollution. Environmental management options proffered so far include: improvements in farming performance (especially related to feed and feeding strategies, stocking densities, water quality management, disease prevention and control, use of chemicals, etc.) and in the selection of sites and culturable species, treatment of effluents, sensitivity of recipient waters and enforcement of environmental regulations and guidelines specific to the culture system. There are presently conceptual frameworks for aquatic environment management backed by legal administrative tools to create or enforce rational system for water management, fisheries and aquaculture development strengthened by adaptive institutionalisation
Resumo:
In this paper, reanalysis fields from the ECMWF have been statistically downscaled to predict from large-scale atmospheric fields, surface moisture flux and daily precipitation at two observatories (Zaragoza and Tortosa, Ebro Valley, Spain) during the 1961-2001 period. Three types of downscaling models have been built: (i) analogues, (ii) analogues followed by random forests and (iii) analogues followed by multiple linear regression. The inputs consist of data (predictor fields) taken from the ERA-40 reanalysis. The predicted fields are precipitation and surface moisture flux as measured at the two observatories. With the aim to reduce the dimensionality of the problem, the ERA-40 fields have been decomposed using empirical orthogonal functions. Available daily data has been divided into two parts: a training period used to find a group of about 300 analogues to build the downscaling model (1961-1996) and a test period (19972001), where models' performance has been assessed using independent data. In the case of surface moisture flux, the models based on analogues followed by random forests do not clearly outperform those built on analogues plus multiple linear regression, while simple averages calculated from the nearest analogues found in the training period, yielded only slightly worse results. In the case of precipitation, the three types of model performed equally. These results suggest that most of the models' downscaling capabilities can be attributed to the analogues-calculation stage.
Resumo:
The Alliance for Coastal Technologies (ACT) held a Workshop on Sensor Technology for Assessing Groundwater-Surface Water Interactions in the Coastal Zone on March 7 to 9,2005 in Savannah, GA. The main goal of the workshop was to summarize the general parameters, which have been found to be useful in assessing groundwater-surface water (GW-SW) interactions in the coastal zone. The workshop participants (Appendix I) were specifically charged with identifying the types of sensor systems, if any, that have been used to obtain time-series data and to make known which parameters may be the most amenable to the development/application of sensor technology. The group consisted of researchers, industry representatives, and environmental managers. Four general recommendations were made: 1. Educate coastal managers and agencies on the importance of GW-SW interactions, keeping in mind that regulatory agencies are driven by a different set of rules than researchers: the focus is on understanding the significance of the problem and providing solutions. ACT could facilitate this process in two ways. First, given that the research literature on this subject is fairly diffuse, ACT could provide links from its web site to fact sheets or other literature. Second, ACT could organize a focused meeting for managers and/or agency groups. Encourage development of primary tools for quantifying flow. The most promising technology in this respect is flow meters designed for flux chambers, mainly because they should be simple to use and can be made relatively inexpensively. However, it should be kept in mind that they provide only point measurements and several would need to be deployed as a network in order to obtain reliable flow estimates. For evaluating system wide GW-SW interactions, tools that integrate the signal over large areas would be required. Suggestions include a user-friendly hydrogeologic models, keeping in mind that freshwater flow is not the entire story, or continuous radon monitors. Though the latter would be slightly more difficult to use in terms of background knowledge, such an instrument would be low power and easy to operate and maintain. ACT could facilitate this recommendation by identifying funding opportunities on its web site and/or performing evaluations of existing technologies that could be summarized on the web site. (pdf contains 18 pages)
Resumo:
HIGHLIGHTS FOR FY 2008 1. Completed the first of a two-year Gulf sturgeon population study on the Choctawhatchee River, Florida. The sub adult and adult Gulf sturgeon population was estimated at 2,800 fish. 2. Gulf sturgeon eggs were collected at three hard bottom sites in the Apalachicola River, Florida; two sites were previously confirmed spawning areas and one was a newly confirmed spawning area. 3. Documented 55 potential environmental threats to Gulf sturgeon spawning habitat in the Pea River, Florida and Alabama. 4. Assigned the Eglin AFB Road-Stream Crossing Working Group to guide the closure, repair and maintenance of roads and road stream crossings that impact threatened and endangered species. 5. Conducted 81 assessments of fish and stream invertebrates on and in watersheds surrounding Eglin AFB. 6. Provided technical support for the 5-year status review and reclassification proposed rule for the Okaloosa darter. 7. Initiated an intensive population genetic analysis of the Okaloosa darter throughout its range. Tissues from over 200 Okaloosa darters were collected and analyzed. 8. Established a GIS database to serve as a host for data from any sites sampled for mussels in Northeast Gulf of Mexico drainages. 9. Conducted habitat surveys at 115 locations in the Apalachicola River to assess the effects of drought-related mussel mortality and strandings, evaluate habitat conditions, and assess population demography. 10. A land use/aerial imagery threats assessment data analysis was completed for the Chipola River. A total of 266 impoundments/borrow pits and 471 unpaved road crossings were identified among the threats. 11. Okaloosa darters marked with elastomeric dyes were monitored in Mill Creek, Eglin AFB, to determine movement and habitat use following completion of a fish passage project. 3 12. Partners for Fish and Wildlife funded a streambank and riparian restoration project on Econfina Creek consisting of 3,900 feet of streambank fencing to exclude cattle access. One acre of riparian floodplain was planted with native trees. 13. We provided design and on-the-ground assistance for restoring surface hydrology at St. Vincent NWR. The project restored approximately 1.5 miles of tidal stream and 100 acres of wetlands. 14. A study was completed on 11 coastal streams to document large wood debris relationships with fluvial geomorphic characteristics. 15. We developed a Population Viability Analysis model for the fat threeridge mussel to determine current and future risk of extinction. 17. A Gulf Sturgeon Friends Group, “Gulf Sturgeon Preservation Society” was organized in FY 08. 18. Multiple outreach projects were completed to detail aquatic resource conservation needs and opportunities, including National Fishing Week, Earth Day, several festivals and school outreach.
Resumo:
This thesis explored the relationship between hydrological variability and associated changes in fish communities in the upper Salado river lakes (Pampa plain, Argentina). The sampling design included five sites along the river connected lakes being explored for fish, hydrological and environmental data during different hydrological conditions. The temporal dynamic of main environmental characteristics of these lakes show that hydrology largely regulates some of the most important factors influencing fish ecology. Changes in fish communities associated with this hydrological and environmental dynamic allow to speculate a first approach towards the functioning of the system as a whole. Following oscillation between droughts and floods, study lakes have shown significant changes on abundance of major fish species, as well as on their recruitment success, which finally leaded to marked changes in fish community structure. Interestingly, trophic structure of communities did not change as much. iOdontesthes bonariensis/i was more abundant during droughts and in saltier sites but also displayed an improvement in recruitment success during these harsh abiotic conditions. Conversely, the abundance of iParapimelodus valenciennis, Cyphocharax voga/i and iCyprinus carpio/i as well as its recruitment success, were largely favoured by lower water residence times and total salinity. This dichotomy is mainly based on different life history strategies of these species against flor and environmental variability and it support the existence of different functional groups among the fish species of upper Salado river lakes. iOligosarcus jenynsii/i did not showed as evident functional response. In conclusion, hydrological and environmental variability can be considered as one of the main factors regulating the functioning and structure of fish communities in these very shallow lowland river lakes of the Pampa plain. Following these results some implications for an eventual regulation of the river regime are discussed.
Resumo:
With the finite element method and the limit equilibrium method, a numerical model has been estab-lished for examining the effects of rainfall infiltration on the stability of slopes. This model is able to reflect the variations in pore water pressure field in slopes, dead weight of the soil, and soil softening caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing was studied to analyze the effects of rainfall infiltration on the seepage field and slope sta-bility. The simulated results showed that a deep slope failure is prone to occur when rainfall infiltration leads to a remarkable variation in the seepage field, especially when the pore water pressure in slopes increases in a large range.
Resumo:
Abstract The rapid growth of both formal and informal high density urban settlements around major water resources has led to increased pollution of streams, rivers, lakes and estuaries, due to contaminated runoff from these developments. The paper identified major contaminants to be : organic waste (sewage), industrial effluent, pesticides and litter. Pollutant loads vary depending on the hydrology of the urban area, local topography and soil conditions. In some instances, severe pollution of neighbouring and downstream water courses has been observed. The management of catchment land uses, riparian zones, in stream habitat, as well as in stream water flow patterns and quality are necessary in order to sustain the integrity and "health" of water resources, for fisheries and other developments. As such, attempts to ensure a certain level of water quality without attention to other aspects will not automatically ensure a "healthy" ecosystem even as fish habitat. Proper management leads to better water quality and conducive environment for increased fish production