959 resultados para glutamate decarboxylase antibody
Resumo:
Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-d-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.
Resumo:
Antibodies that bind well to the envelope spikes of immunodeficiency viruses such as HIV type 1 (HIV-1) and simian immunodeficiency virus (SIV) can offer protection or benefit if present at appropriate concentrations before viral exposure. The challenge in antibody-based HIV-1 vaccine design is to elicit such antibodies to the viruses involved in transmission in humans (primary viruses). At least two major obstacles exist. The first is that very little of the envelope spike surface of primary viruses appears accessible for antibody binding (low antigenicity), probably because of oligomerization of the constituent proteins and a high degree of glycosylation of one of the proteins. The second is that the mature oligomer constituting the spikes appears to stimulate only weak antibody responses (low immunogenicity). Viral variation is another possible obstacle that appears to present fewer problems than anticipated. Vaccine design should focus on presentation of an intact mature oligomer, increasing the immunogenicity of the oligomer and learning from the antibodies available that potently neutralize primary viruses.
Resumo:
Effective chemotherapy remains a key issue for successful cancer treatment in general and neuroblastoma in particular. Here we report a chemotherapeutic strategy based on catalytic antibody-mediated prodrug activation. To study this approach in an animal model of neuroblastoma, we have synthesized prodrugs of etoposide, a drug widely used to treat this cancer in humans. The prodrug incorporates a trigger portion designed to be released by sequential retro-aldol/retro-Michael reactions catalyzed by aldolase antibody 38C2. This unique prodrug was greater than 102-fold less toxic than etoposide itself in in vitro assays against the NXS2 neuroblastoma cell line. Drug activity was restored after activation by antibody 38C2. Proof of principle for local antibody-catalyzed prodrug activation in vivo was established in a syngeneic model of murine neuroblastoma. Mice with established 100-mm3 s.c. tumors who received one intratumoral injection of antibody 38C2 followed by systemic i.p. injections with the etoposide prodrug showed a 75% reduction in s.c. tumor growth. In contrast, injection of either antibody or prodrug alone had no antitumor effect. Systemic injections of etoposide at the maximum tolerated dose were significantly less effective than the intratumoral antibody 38C2 and systemic etoposide prodrug combination. Significantly, mice treated with the prodrug at 30-fold the maximum tolerated dose of etoposide showed no signs of prodrug toxicity, indicating that the prodrug is not activated by endogenous enzymes. These results suggest that this strategy may provide a new and potentially nonimmunogenic approach for targeted cancer chemotherapy.
Resumo:
Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide.
Resumo:
A cDNA encoding for a functional ornithine decarboxylase has been isolated from a cDNA library of carpels of tomato (Lycopersicon esculentum Mill.). Ornithine decarboxylase in tomato is represented by a single-copy gene that we show to be up-regulated during early fruit growth induced by 2,4-dichlorophenoxyacetic acid and gibberellic acid.
Resumo:
Opium poppy (Papaver somniferum) contains a large family of tyrosine/dihydroxyphenylalanine decarboxylase (tydc) genes involved in the biosynthesis of benzylisoquinoline alkaloids and cell wall-bound hydroxycinnamic acid amides. Eight members from two distinct gene subfamilies have been isolated, tydc1, tydc4, tydc6, tydc8, and tydc9 in one group and tydc2, tydc3, and tydc7 in the other. The tydc8 and tydc9 genes were located 3.2 kb apart on one genomic clone, suggesting that the family is clustered. Transcripts for most tydc genes were detected only in roots. Only tydc2 and tydc7 revealed expression in both roots and shoots, and TYDC3 mRNAs were the only specific transcripts detected in seedlings. TYDC1, TYDC8, and TYDC9 mRNAs, which occurred in roots, were not detected in elicitor-treated opium poppy cultures. Expression of tydc4, which contains a premature termination codon, was not detected under any conditions. Five tydc promoters were fused to the β-glucuronidase (GUS) reporter gene in a binary vector. All constructs produced transient GUS activity in microprojectile-bombarded opium poppy and tobacco (Nicotiana tabacum) cell cultures. The organ- and tissue-specific expression pattern of tydc promoter-GUS fusions in transgenic tobacco was generally parallel to that of corresponding tydc genes in opium poppy. GUS expression was most abundant in the internal phloem of shoot organs and in the stele of roots. Select tydc promoter-GUS fusions were also wound induced in transgenic tobacco, suggesting that the basic mechanisms of developmental and inducible tydc regulation are conserved across plant species.
Resumo:
We analyzed the antioxidative defense responses of transgenic tobacco (Nicotiana tabacum) plants expressing antisense RNA for uroporphyrinogen decarboxylase or coproporphyrinogen oxidase. These plants are characterized by necrotic leaf lesions resulting from the accumulation of potentially photosensitizing tetrapyrroles. Compared with control plants, the transformants had increased levels of antioxidant mRNAs, particularly those encoding superoxide dismutase (SOD), catalase, and glutathione peroxidase. These elevated transcript levels correlated with increased activities of cytosolic Cu/Zn-SOD and mitochondrial Mn-SOD. Total catalase activity decreased in the older leaves of the transformants to levels lower than in the wild-type plants, reflecting an enhanced turnover of this photosensitive enzyme. Most of the enzymes of the Halliwell-Asada pathway displayed increased activities in transgenic plants. Despite the elevated enzyme activities, the limited capacity of the antioxidative system was apparent from decreased levels of ascorbate and glutathione, as well as from necrotic leaf lesions and growth retardation. Our data demonstrate the induction of the enzymatic detoxifying defense system in several compartments, suggesting a photosensitization of the entire cell. It is proposed that the tetrapyrroles that initially accumulate in the plastids leak out into other cellular compartments, thereby necessitating the local detoxification of reactive oxygen species.
Resumo:
In C3 plants large amounts of photorespiratory glycine (Gly) are converted to serine by the tetrahydrofolate (THF)-dependent activities of the Gly decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT). Using 13C nuclear magnetic resonance, we monitored the flux of carbon through the GDC/SHMT enzyme system in Arabidopsis thaliana (L.) Heynh. Columbia exposed to inhibitors of THF-synthesizing enzymes. Plants exposed for 96 h to sulfanilamide, a dihydropteroate synthase inhibitor, showed little reduction in flux through GDC/SHMT. Two other sulfonamide analogs were tested with similar results, although all three analogs competitively inhibited the partially purified enzyme. However, methotrexate or aminopterin, which are confirmed inhibitors of Arabidopsis dihydrofolate reductase, decreased the flux through the GDC/SHMT system by 60% after 48 h and by 100% in 96 h. The uptake of [α-13C]Gly was not inhibited by either drug class. The specificity of methotrexate action was shown by the ability of 5-formyl-THF to restore flux through the GDC/SHMT pathway in methotrexate-inhibited plants. The experiments with sulfonamides strongly suggest that the mitochondrial THF pool has a long half-life. The studies with methotrexate support the additional, critical role of dihydrofolate reductase in recycling THF oxidized in thymidylate synthesis.
Resumo:
The metabolisms of arginine (Arg), ornithine (Orn), and putrescine were compared in a nontransgenic and a transgenic cell line of carrot (Daucus carota L.) expressing a mouse Orn decarboxylase cDNA. [14C]Arg, [14C]Orn, and [14C]putrescine were fed to cells and their rates of decarboxylation, uptake, metabolism into polyamines, and incorporation into acid-insoluble material were determined. Transgenic cells showed higher decarboxylation rates for labeled Orn than the nontransgenic cells. This was correlated positively with higher amounts of labeled putrescine production from labeled Orn. With labeled Arg, both the transgenic and the nontransgenic cells exhibited similar rates of decarboxylation and conversion into labeled putrescine. When [14C]putrescine was fed, higher rates of degradation were observed in transgenic cells as compared with the nontransgenic cells. It is concluded that (a) increased production of putrescine via the Orn decarboxylase pathway has no compensatory effects on the Arg decarboxylase pathway, and (b) higher rates of putrescine production in the transgenic cells are accompanied by higher rates of putrescine conversion into spermidine and spermine as well as the catabolism of putrescine.
Resumo:
Active immunization with the amyloid β (Aβ) peptide has been shown to decrease brain Aβ deposition in transgenic mouse models of Alzheimer's disease and certain peripherally administered anti-Aβ antibodies were shown to mimic this effect. In exploring factors that alter Aβ metabolism and clearance, we found that a monoclonal antibody (m266) directed against the central domain of Aβ was able to bind and completely sequester plasma Aβ. Peripheral administration of m266 to PDAPP transgenic mice, in which Aβ is generated specifically within the central nervous system (CNS), results in a rapid 1,000-fold increase in plasma Aβ, due, in part, to a change in Aβ equilibrium between the CNS and plasma. Although peripheral administration of m266 to PDAPP mice markedly reduces Aβ deposition, m266 did not bind to Aβ deposits in the brain. Thus, m266 appears to reduce brain Aβ burden by altering CNS and plasma Aβ clearance.
Resumo:
Cytotoxic T cells recognize mosaic structures consisting of target peptides embedded within self-major histocompatibility complex (MHC) class I molecules. This structure has been described in great detail for several peptide-MHC complexes. In contrast, how T-cell receptors recognize peptide-MHC complexes have been less well characterized. We have used a complete set of singly substituted analogs of a mouse MHC class I, Kk-restricted peptide, influenza hemagglutinin (Ha)255-262, to address the binding specificity of this MHC molecule. Using the same peptide-MHC complexes we determined the fine specificity of two Ha255-262-specific, Kk-restricted T cells, and of a unique antibody, pSAN, specific for the same peptide-MHC complex. Independently, a model of the Ha255-262-Kk complex was generated through homology modeling and molecular mechanics refinement. The functional data and the model corroborated each other showing that peptide residues 1, 3, 4, 6, and 7 were exposed on the MHC surface and recognized by the T cells. Thus, the majority, and perhaps all, of the side chains of the non-primary anchor residues may be available for T-cell recognition, and contribute to the stringent specificity of T cells. A striking similarity between the specificity of the T cells and that of the pSAN antibody was found and most of the peptide residues, which could be recognized by the T cells, could also be recognized by the antibody.
Resumo:
Neurons in very low density hippocampal cultures that are physiologically identified as either GABAergic inhibitory or glutamatergic excitatory all contain mRNA for the gamma-aminobutyric acid (GABA) synthetic enzyme, glutamic acid decarboxylase (GAD), as detected by single cell mRNA amplification and PCR. However, consistent with the physiology, immunocytochemistry revealed that only a subset of the neurons stain for either GAD protein or GABA. A similar fraction hybridize with RNA probes for GAD65 and GAD67. Hippocampal CA1 pyramidal neurons in slice preparations, which are traditionally thought to be excitatory, also contain mRNA for GAD65 and GAD67. Hippocampal neurons in culture did not contain mRNA for two other neurotransmitter synthesizing enzymes, tyrosine hydroxylase, and choline acetyl transferase. These data suggest that in some neurons, presumably the excitatory neurons, GAD mRNA is selectively regulated at the level of translation. We propose that neurotransmitter phenotype may be posttranscriptionally regulated and neurons may exhibit transient phenotypic plasticity in response to environmental influences.
Resumo:
It is known that beta 2 integrins are crucial for leukocyte cell-cell and cell-matrix interactions, and accumulating evidence now suggests that integrins serve not only as a structural link but also as a signal-transducing unit that controls adhesion-induced changes in cell functions. In the present study, we plated human neutrophils on surface-bound anti-beta 2 (CD18) antibodies and found that the small GTP-binding protein p21ras is activated by beta 2 integrins. Pretreatment of the cells with genistein, a tyrosine kinase inhibitor, led to a complete block of p21ras activation, an effect that was not achieved with either U73122, which abolishes the beta 2 integrin-induced Ca2+ signal, or wortmannin, which totally inhibits the phosphatidylinositol 3-kinase activity. Western blot analysis revealed that antibody-induced engagement of beta 2 integrins causes tyrosine phosphorylation of several proteins in the cells. One of these tyrosine-phosphorylated proteins had an apparent molecular mass of 95 kDa and was identified as the protooncogene product Vav, a p21ras guanine nucleotide exchange factor that is specifically expressed in cells of hematopoietic lineage. A role for Vav in the activation of p21ras is supported by the observations that antibody-induced engagement of beta 2 integrins causes an association of Vav with p21ras and that the effect of genistein on p21ras activation coincided with its ability to inhibit both the tyrosine phosphorylation of Vav and the Vav-p21ras association. Taken together, these results indicate that antibody-induced engagement of beta 2 integrins on neutrophils triggers tyrosine phosphorylation of Vav and, possibly through its association, a downstream activation of p21ras.
Resumo:
New Zealand black x New Zealand white (NZB/W) F1 mice spontaneously develop an autoimmune syndrome with notable similarities to human systemic lupus erythematosus. Female NZB/WF1 mice produce high titers of antinuclear antibodies and invariably succumb to severe glomerulonephritis by 12 months of age. Although the development of the immune-complex nephritis is accompanied by abundant local and systemic complement activation, the role of proinflammatory complement components in disease progression has not been established. In this study we have examined the contribution of activated terminal complement proteins to the pathogenesis of the lupus-like autoimmune disease. Female NZB/W F1 mice were treated with a monoclonal antibody (mAb) specific for the C5 component of complement that blocks the cleavage of C5 and thus prevents the generation of the potent proinflammatory factors C5a and C5b-9. Continuous therapy with anti-C5 mAb for 6 months resulted in significant amelioration of the course of glomerulonephritis and in markedly increased survival. These findings demonstrate an important role for the terminal complement cascade in the progression of renal disease in NZB/W F1 mice, and suggest that mAb-mediated C5 inhibition may be a useful approach to the therapy of immune-complex glomerulonephritis in humans.
Resumo:
Antiphospholipid antibodies, including anticardiolipin antibodies (ACA), are strongly associated with recurrent thrombosis in patients with the antiphospholipid syndrome (APS). To date, reports about the binding specificities of ACA and their role(s) in causing and/or sustaining thrombosis in APS are conflicting and controversial. The plasmas of patients with APS, usually containing a mixture of autoantibodies, vary in binding specificity for different phospholipids/cofactors and vary in in vitro lupus anticoagulant activity. Although in vivo assays that allow assessment of the pathogenic procoagulant activity of patient autoantibodies have recently been developed, the complex nature of the mixed species prevented determination of the particular species responsible for in vivo thrombosis. We have generated two human IgG monoclonal ACA from an APS patient with recurrent thrombosis. Both bound to cardiolipin in the presence of 10% bovine serum, but not in its absence, and both were reactive against phosphatidic acid, but were nonreactive against purified human beta-2 glycoprotein 1, DNA, heparan sulfate, or four other test antigens. Both monoclonal autoantibodies lacked lupus anticoagulant activity and did not inhibit prothrombinase activity. Remarkably, one of the monoclonal antibodies has thrombogenic properties when tested in an in vivo mouse model. This finding provides the first direct evidence that a particular antiphospholipid antibody specificity may contribute to in vivo thrombosis.