963 resultados para gene silencing
Resumo:
Vigna Delta(1)-pyrroline-5-carboxylate synthetase (P5CS) cDNA was transferred to chickpea (Cicer arietinum L.) cultivar Annigeri via Agrobacterium tumefaciens mediated transformation. Following selection on hygromycin and regeneration, 60 hygromycin-resistant plants were recovered. Southern blot analysis of five fertile independent lines of T0 and T1 generation revealed single and multiple insertions of the transgene. RT-PCR and Western blot analysis of T0 and T1 progeny demonstrated that the P5CS gene is expressed and produced functional protein in chickpea. T1 transgenic lines accumulated higher amount of proline under 250 mM NaCl compared to untransformed controls. Higher accumulation of Na(+) was noticed in the older leaves but negligible accumulation in seeds of T1 transgenic lines as compared to the controls. Chlorophyll stability and electrolyte leakage indicated that proline overproduction helps in alleviating salt stress in transgenic chickpea plants. The T1 transgenics lines were grown to maturity and set normal viable seeds under continuous salinity stress (250 mM) without any reduction in plant yield in terms of seed mass.
Resumo:
We have investigated the possible role of a conserved cis-acting element, the cryptic AUG, present in the 5' UTR of coxsackievirus B3 (CVB3) RNA. CVB3 5' UTR contains multiple AUG codons upstream of the initiator AUG, which are not used for the initiation of translation. The 48S ribosomal assembly takes place upstream of the cryptic AUG. We show here that mutation in the cryptic AUG results in reduced efficiency of translation mediated by the CVB3 IRES; mutation also reduces the interaction of mutant IRES with a well characterized IRES trans-acting factor, the human La protein. Furthermore, partial silencing of the La gene showed a decrease in IRES activity in the case of both the wild-type and mutant. We have demonstrated here that the interaction of the 48S ribosomal complex with mutant RNA was weaker compared with wild-type RNA by ribosome assembly analysis. We have also investigated by chemical and enzymic modifications the possible alteration in secondary structure in the mutant RNA. Results suggest that the secondary structure of mutant RNA was only marginally altered. Additionally, we have demonstrated by generating compensatory and non-specific mutations the specific function of the cryptic AUG in internal initiation. Results suggest that the effect of the cryptic AUG is specific and translation could not be rescued. However, a possibility of tertiary interaction of the cryptic AUG with other cis-acting elements cannot be ruled out. Taken together, it appears that the integrity of the cryptic AUG is important for efficient translation initiation by the CVB3 IRES RNA.
Resumo:
A novel PCR based assay was devised to specifically detect contamination of any Salmonella serovar in milk, fruit juice and ice-cream without pre-enrichment. This method utilizes primers against hilA gene which is conserved in all Salmonella serovars and absent from the close relatives of Salmonella. An optimized protocol, in terms time and money, is provided for the reduction of PCR contaminants from milk, ice-cream and juice through the use of routine laboratory chemicals. The simplicity, efficiency (time taken 3-4 h) and sensitivity (to about 5-10 CFU/ml) of this technique confers a unique advantage over other previously used time consuming detection techniques. This technique does not involve pre-enrichment of the samples or extensive sample processing, which was a pre-requisite in most of the other reported studies. Hence, this assay can be ideal for adoption, after further fine tuning, by food quality control for timely detection of Salmonella contamination as well as other food-borne pathogens (with species specific primers) in food especially milk, ice-cream and fruit juice. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The most important objective of the present study was to explain why cationic lipid (CL)-mediated delivery of plasmid DNA (pDNA) is better than that of linear DNA in gene therapy, a question that, until now, has remained unanswered. Herein for the first time we experimentally show that for different types of CLs, pDNA, in contrast to linear DNA, is compacted with a large amount of its counterions, yielding a lower effective negative charge. This feature has been confirmed through a number of physicochemical and biochemical investigations. This is significant for both in vitro and in vivo transfection studies. For an effective DNA transfection, the lower the amount of the CL, the lower is the cytotoxicity. The study also points out that it is absolutely necessary to consider both effective charge ratios between CL and pDNA and effective pDNA charges, which can be determined from physicochemical experiments.
Resumo:
We present here a series of cholesterol based cationic lipid suspensions that solubilize single-walled carbon nanotubes (SWCNT) efficiently in water. Each cationic lipid formulation was characterized in terms of their energy minimized molecular structures, bilayer widths of the aggregates based on X-ray diffraction. Then these aggregates were investigated pertaining to their DNA binding and release efficiency, effect of CNT inclusion on the stability of cationic cholesterol lipid-DNA complexes, Zeta potential values and changes in the chiro-optical property of DNA, effect on Raman spectral shift and changes in morphology by SEM and AFM. Each cationic lipid formulation was optimized for the amount of SWCNT solubilized in water, lipid-DNA ratio, amount of the plasmid DNA that can be transfected and the effect on the cellular toxicity. The resulting SWCNT-lipid formulations were then used for in vitro transfection of pEGFP-C3 in A549 (human alveolar basal epithelial) cells and HeLa (human cervical cancer) cells. Advantageously, the CNT-loaded formulations confer an excellent transfection efficiency even in high percentages of blood serum and showed significantly better gene transfer efficiency compared to one of the potent, well-known commercial transfection reagent, Lipofectamine2000.
Resumo:
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Breaks in chromosome 18 are localized at the 3'-UTR of BCL2 gene or downstream and are mainly clustered in either the major breakpoint region or the minor breakpoint cluster region (mcr). The recombination activating gene (RAG) complex induces breaks at IgH locus of chromosome 14, whereas the mechanism of fragility at BCL2 mcr remains unclear. Here, for the first time, we show that RAGs can nick mcr; however, the mechanism is unique. Three independent nicks of equal efficiency are generated, when both Mg2+ and Mn2+ are present, unlike a single nick during V(D)J recombination. Further, we demonstrate that RAG binding and nicking at the mcr are independent of nonamer, whereas a CCACCTCT motif plays a critical role in its fragility, as shown by sequential mutagenesis. More importantly, we recapitulate the BCL2 mcr translocation and find that mcr can undergo synapsis with a standard recombination signal sequence within the cells, in a RAG-dependent manner. Further, mutation to the CCACCTCT motif abolishes recombination within the cells, indicating its vital role. Hence, our data suggest a novel, physiologically relevant, nonamer-independent mechanism of RAG nicking at mcr, which may be important for generation of chromosomal translocations in humans.
Resumo:
The search for molecular markers which predict response to chemotherapy is an important aspect of current neuro-oncology research. MGMT promoter methylation is the only proved marker of glioblastoma. The purpose of this study was to assess the effect of topoisomerase expression on glioblastoma survival and study the mechanisms involved. The transcript levels of all isoforms of the topoisomerase family in all grades of diffuse astrocytoma were assessed. A prospective study of patients with glioblastoma treated by a uniform treatment procedure was performed with the objective of correlating outcome with gene expression. The ability of TOP2A enzyme to relax the super coiled plasmid DNA in the presence of temozolomide was evaluated to assess its effect on TOP2A. The temozolomide cyctotoxicity of TOP2A-silenced U251 cells was assessed. The transcript levels of TOP2A, TOP2B, and TOP3A are upregulated significantly in GBM in comparison with lower grades of astrocytoma and normal brain samples. mRNA levels of TOP2A correlated significantly with survival of the patients. Higher TOP2A transcript levels in GBM patients predicted better prognosis (P = 0.043; HR = 0.889). Interestingly, we noted that temozolomide inhibited TOP2A activity in in-vitro enzyme assays. We also noted that siRNA knock down of TOP2A rendered a glioma cell line resistant to temozolomide chemotherapy. We demonstrated for the first time that temozolomide is also a TOP2A inhibitor and established that TOP2A transcript levels determine the chemosensitivity of glioblastoma to temozolomide therapy. Very high levels of TOP2A are a good prognostic indicator in GBM patients receiving temozolomide chemotherapy.
Resumo:
During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the DSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The DSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the DSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the DSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.
Resumo:
The chb operon of Escherichia coli is involved in the utilization of the beta-glucosides chitobiose and cellobiose. The function of chbG (ydjC), the sixth open reading frame of the operon that codes for an evolutionarily conserved protein is unknown. We show that chbG encodes a monodeacetylase that is essential for growth on the acetylated chitooligosaccharides chitobiose and chitotriose but is dispensable for growth on cellobiose and chitosan dimer, the deacetylated form of chitobiose. The predicted active site of the enzyme was validated by demonstrating loss of function upon substitution of its putative metal-binding residues that are conserved across the YdjC family of proteins. We show that activation of the chb promoter by the regulatory protein ChbR is dependent on ChbG, suggesting that deacetylation of chitobiose-6-P and chitotriose-6-P is necessary for their recognition by ChbR as inducers. Strains carrying mutations in chbR conferring the ability to grow on both cellobiose and chitobiose are independent of chbG function for induction, suggesting that gain of function mutations in ChbR allow it to recognize the acetylated form of the oligosaccharides. ChbR-independent expression of the permease and phospho-beta-glucosidase from a heterologous promoter did not support growth on both chitobiose and chitotriose in the absence of chbG, suggesting an additional role of chbG in the hydrolysis of chitooligosaccharides. The homologs of chbG in metazoans have been implicated in development and inflammatory diseases of the intestine, indicating that understanding the function of E. coli chbG has a broader significance.
Resumo:
Two transcription termination mechanisms - intrinsic and Rho-dependent - have evolved in bacteria. The Rho factor occurs in most bacterial lineages, and has been hypothesized to play a global regulatory role. Genome-wide studies using microarray, 2D-gel electrophoresis and ChIP-chip provided evidence that Rho serves to silence transcription from horizontally acquired genes and prophages in Escherichia coli K-12, implicating the factor to be a part of the ``cellular immune mechanism'' protecting against deleterious phages and aberrant gene expression from acquired xenogenic DNA. We have investigated this model by adopting an alternate in silico approach and have extended the study to other species. Our analysis shows that several genomic islands across diverse phyla have under-representation of intrinsic terminators, similar to that experimentally observed in E. coli K-12. This implies that Rho-dependent termination is the predominant process operational in these islands and that silencing of foreign DNA is a conserved function of Rho. From the present analysis, it is evident that horizontally acquired islands have lost intrinsic terminators to facilitate Rho-dependent termination. These results underscore the importance of Rho as a conserved, genome-wide sentinel that regulates potentially toxic xenogenic DNA. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Lipoplexes formed by the pEGFP-C3 plasmid DNA (pDNA) and lipid mixtures containing cationic gemini surfactant of the 1,2-bis(hexadecyl dimethyl ammonium) Acmes family referred to as C16CnC16, where n = 2 3, 5, or 12, and the zwitterionic helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) have been studied from a wide variety of physical, chemical, and biological standpoints. The study has been carried out using several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), cryo-TEM, gene transfection, cell viability/cytotoxicity, and confocal fluorescence microscopy. As reported recently in a communication (J. Am. Chem. Soc. 2011, 133, 18014), the detailed physicochemical and biological studies confirm that, in the presence of the studied series lipid mixtures, plasmid DNA is compacted with a large number of its associated Na+ counterions. This in turn yields a much lower effective negative charge, q(pDNA)(-), a value that has been experimentally obtained for each mixed lipid mixture. Consequently, the cationic lipid (CL) complexes prepared with pDNA and CL/DOPE mixtures to be used in gene transfection require significantly less amount of CL than the one estimated assuming a value of q(DNA)(-) = -2. This drives to a considerably lower cytotoxicity of the gene vector. Depending on the CL molar composition, alpha, of the lipid mixture, and the effective charge ratio of the lipoplex, rho(eff), the reported SAXS data indicate the presence of two or three structures in the same lipoplex, one in the DOPE-rich region, other in the CL-rich region, and another one present at any CL composition. Cryo-TEM and SAXS studies with C16CnC16/DOPE-pDNA lipoplexes indicate that pDNA is localized between the mixed lipid bilayers of lamellar structures within a monolayer of similar to 2 nm. This is consistent with a highly compacted supercoiled pDNA conformation compared with that of linear DNA. Transfection studies were carried out with HEK293T, HeLa, CHO, U343, and H460 cells. The alpha and rho(eff) values for each lipid mixture were optimized on HEK293T cells for transfection, and using these values, the remaining cells were also transfected in absence (-FBS-FBS) and presence (-FBS+FBS) of serum. The transfection efficiency was higher with the CLs of shorter gemini spacers (n = 2 or 3). Each formulation expressed GFP on pDNA transfection and confocal fluorescence microscopy corroborated the results. C16C2C16/DOPE mixtures were the most efficient toward transfection among all the lipid mixtures and, in presence of serum, even better than the Lipofectamine2000, a commercial transfecting agent Each lipid combination was safe and did not show any significant levels of toxicity. Probably, the presence of two coexisting lamellar structures in lipoplexes synergizes the transfection efficiency of the lipid mixtures which are plentiful in the lipoplexes formed by CLs with short spacer (n = 2, 3) than those with the long spacer (n = 5, 12).
Resumo:
Escherichia coli-mycobacterium shuttle vectors are important tools for gene expression and gene replacement in mycobacteria. However, most of the currently available vectors are limited in their use because of the lack of extended multiple cloning sites (MCSs) and convenience of appending an epitope tag(s) to the cloned open reading frames (ORFs). Here we report a new series of vectors that allow for the constitutive and regulatable expression of proteins, appended with peptide tag sequences at their N and C termini, respectively. The applicability of these vectors is demonstrated by the constitutive and induced expression of the Mycobacterium tuberculosis pknK gene, coding for protein kinase K, a serine-threonine protein kinase. Furthermore, a suicide plasmid with expanded MCS for creating gene replacements, a plasmid for chromosomal integrations at the commonly used L5 attB site, and a hypoxia-responsive vector, for expression of a gene(s) under hypoxic conditions that mimic latency, have also been created. Additionally, we have created a vector for the coexpression of two proteins controlled by two independent promoters, with each protein being in fusion with a different tag. The shuttle vectors developed in the present study are excellent tools for the analysis of gene function in mycobacteria and are a valuable addition to the existing repertoire of vectors for mycobacterial research.
Resumo:
Mutations in the MCPH1 (microcephalin 1) gene, located at chromosome 8p23.1, result in two autosomal recessive disorders: primary microcephaly and premature chromosome condensation syndrome. MCPH1 has also been shown to be downregulated in breast, prostate and ovarian cancers, and mutated in 1/10 breast and 5/41 endometrial tumors, suggesting that it could also function as a tumor suppressor (TS) gene. To test the possibility of MCPH1 as a TS gene, we first performed LOH study in a panel of 81 matched normal oral tissues and oral squamous cell carcinoma (OSCC) samples, and observed that 14/71 (19.72%) informative samples showed LOH, a hallmark of TS genes. Three protein truncating mutations were identified in 1/15 OSCC samples and 2/5 cancer cell lines. MCPH1 was downregulated at both the transcript and protein levels in 21/41 (51.22%) and 19/25 (76%) OSCC samples respectively. A low level of MCPH1 promoter methylation was also observed in 4/40 (10%) tumor samples. We further observed that overexpression of MCPH1 decreased cellular proliferation, anchorage-independent growth in soft agar, cell invasion and tumor size in nude mice, indicating its tumor suppressive function. Using bioinformatic approaches and luciferase assay, we showed that the 3'-UTR of MCPH1 harbors two non-overlapping functional seed regions for miR-27a which negatively regulated its level. The expression level of miR-27a negatively correlated with the MCPH1 protein level in OSCC. Our study indicates for the first time that, in addition to its role in brain development, MCPH1 also functions as a tumor suppressor gene and is regulated by miR-27a.
Resumo:
The present research focused on determining the effect of hydroxyapatite-20 wt% mullite (H20M) particle eluates on apoptosis and differentiation of human fetal osteoblast (hFOB) cells. The H20M particles (257 +/- 37 nm) were prepared, starting with the production of a nanocomposite using a unique route of spark plasma sintering, followed by a repeated grinding-cryo treatment and elution process. Tetrazolium based cytotoxicity assay results showed a time-and dose-dependent effect of H20M particle eluates on hFOB cytotoxicity. In particular, the results revealed statistically reduced cell viability after hFOB were exposed to the above 10% H20M (257 +/- 37 nm) eluates for 48 h. The apoptotic cell death triggered by H20M treatment was proven by the analysis of molecular markers of apoptosis, that is, the Bcl-2 family of genes. hFOB expression of Bcl-xL and Bcl-xS significantly increased 25.6- and 25.2-fold for 50% of H20M concentrations, respectively. The ratio of Bcl-xL/Bax (4.01) decreased 2-fold for hFOB exposed to 100% of H20M eluates than that for 10% H20M eluate (7.94) treated hFOB cells. On the other hand, the Bcl-xS/Bax ratio for the 10% H20M eluate was 4.15-fold, whereas for 100% H20M eluates, it was 11.55-fold. Specifically, the anti-apoptotic effect of the H20M particle eluates was corroborated by the up-regulation of bone cell differentiation marker genes such as, collagen type I, cbfa, and osteocalcin. In summary, the present work clearly demonstrated that H20M submicron to nanometer composite particle eluates have a minimal effect on hFOB apoptosis and can even up-regulate the expression of bone cell markers at the molecular level.