949 resultados para gene activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Schizosaccharomyces pombe dhp1+ gene is an ortholog of the Saccharomyces cerevisiae RAT1 gene, which encodes a nuclear 5′→3′ exoribonuclease, and is essential for cell viability. To clarify the cellular functions of the nuclear 5′→3′ exoribonuclease, we isolated and characterized a temperature-sensitive mutant of dhp1 (dhp1-1 mutant). The dhp1-1 mutant showed nuclear accumulation of poly(A)+ RNA at the restrictive temperature, as was already reported for the rat1 mutant. Interestingly, the dhp1-1 mutant exhibited aberrant chromosome segregation at the restrictive temperature. The dhp1-1 cells frequently contained condensed chromosomes, most of whose sister chromatids failed to separate during mitosis despite normal mitotic spindle elongation. Finally, chromosomes were displaced or unequally segregated. As similar mitotic defects were also observed in Dhp1p-depleted cells, we concluded that dhp1+ is required for proper chromosome segregation as well as for poly(A)+ RNA metabolism in fission yeast. Furthermore, we isolated a multicopy suppressor of the dhp1-1 mutant, referred to as din1+. We found that the gene product of dhp1-1 was unstable at high temperatures, but that reduced levels of Dhp1-1p could be suppressed by overexpressing Din1p at the restrictive temperature. Thus, Din1p may physically interact with Dhp1p and stabilize Dhp1p and/or restore its activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACTIVITY is a database on DNA/RNA site sequences with known activity magnitudes, measurement systems, sequence-activity relationships under fixed experimental conditions and procedures to adapt these relationships from one measurement system to another. This database deposits information on DNA/RNA affinities to proteins and cell nuclear extracts, cutting efficiencies, gene transcription activity, mRNA translation efficiencies, mutability and other biological activities of natural sites occurring within promoters, mRNA leaders, and other regulatory regions in pro- and eukaryotic genomes, their mutant forms and synthetic analogues. Since activity magnitudes are heavily system-dependent, the current version of ACTIVITY is supplemented by three novel sub-databases: (i) SYSTEM, measurement systems; (ii) KNOWLEDGE, sequence-activity relationships under fixed experimental conditions; and (iii) CROSS_TEST, procedures adapting a relationship from one measurement system to another. These databases are useful in molecular biology, pharmacogenetics, metabolic engineering, drug design and biotechnology. The databases can be queried using SRS and are available through the Web, http://wwwmgs.bionet.nsc.ru/systems/Activity/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Keratins 14 and 5 are the structural hallmarks of the basal keratinocytes of the epidermis and outer root sheath (ORS) of the hair follicle. Their genes are controlled in a tissue-specific manner and thus serve as useful tools to elucidate the regulatory mechanisms involved in keratinocyte-specific transcription. Previously we identified several keratinocyte-specific DNase I hypersensitive sites (HSs) in the 5′ regulatory sequences of the K14 gene and showed that a 700-bp regulatory domain encompassing HSs II and III can confer epidermal and ORS-specific gene expression in transgenic mice in vivo. Although HS II harbored much of the transactivation activity in vitro, it was not sufficient to restrict expression to keratinocytes in vivo. We now explore the HS III regulatory element. Surprisingly, this element on its own confers gene expression to the keratinocytes of the inner root sheath (IRS) of the hair follicle, whereas a 275-bp DNA fragment containing both HSs II and III shifts the expression from the IRS to the basal keratinocytes and ORS in vivo. Electrophoretic mobility-shift assays and mutational studies of HSs III reveal a role for CACCC-box binding proteins, Sp1 family members, and other factors adding to the list of previously described factors that are involved in keratinocyte-specific gene expression. These studies highlight a cooperative interaction of the two HSs domains and strengthen the importance of combinatorial play of transcription factors that govern keratinocyte-specific gene regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fabry disease is a lysosomal storage disorder caused by a deficiency of the lysosomal enzyme α-galactosidase A (α-gal A). This enzyme deficiency leads to impaired catabolism of α-galactosyl-terminal lipids such as globotriaosylceramide (Gb3). Patients develop painful neuropathy and vascular occlusions that progressively lead to cardiovascular, cerebrovascular, and renal dysfunction and early death. Although enzyme replacement therapy and bone marrow transplantation have shown promise in the murine analog of Fabry disease, gene therapy holds a strong potential for treating this disease in humans. Delivery of the normal α-gal A gene (cDNA) into a depot organ such as liver may be sufficient to elicit corrective circulating levels of the deficient enzyme. To investigate this possibility, a recombinant adeno-associated viral vector encoding human α-gal A (rAAV-AGA) was constructed and injected into the hepatic portal vein of Fabry mice. Two weeks postinjection, α-gal A activity in the livers of rAAV-AGA-injected Fabry mice was 20–35% of that of the normal mice. The transduced animals continued to show higher α-gal A levels in liver and other tissues compared with the untouched Fabry controls as long as 6 months after treatment. In parallel to the elevated enzyme levels, we see significant reductions in Gb3 levels to near normal at 2 and 5 weeks posttreatment. The lower Gb3 levels continued in liver, spleen, and heart, up to 25 weeks with no significant immune response to the virus or α-gal A. Also, no signs of liver toxicity occurred after the rAAV-AGA administration. These findings suggest that an AAV-mediated gene transfer may be useful for the treatment of Fabry disease and possibly other metabolic disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of molecular genetic approaches were used to study the effect of rabies virus (RV) infection on host gene expression in mouse brain. The down-regulation of gene expression was found to be a major effect of RV infection by using subtraction hybridization. However, a combination of techniques identified approximately 39 genes activated by infection. These included genes involved in regulation of cell metabolism, protein synthesis, synaptic activity, and cell growth and differentiation. Northern blot analysis to monitor temporal activation of several of these genes following infection revealed essentially two patterns of activation: (i) an early response with up-regulation beginning within 3 days after infection and correlating with transcription of RV nuclear protein; and (ii) a late response with enhanced expression occurring at days 6–7 after infection and associated with peak RV replication. The gene activation patterns and the known functions of their products suggest that a number of host genes may be involved in the replication and spread of RV in the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cAMP-responsive element binding protein (CREB), a key regulator of gene expression, is activated by phosphorylation on Ser-133. Several different protein kinases possess the capability of driving this phosphorylation, making it a point of potential convergence for multiple intracellular signaling cascades. Previous work in neurons has indicated that physiologic synaptic stimulation recruits a fast calmodulin kinase IV (CaMKIV)-dependent pathway that dominates early signaling to CREB. Here we show in hippocampal neurons that the fast, CaMK-dependent pathway can be followed by a slower pathway that depends on Ras/mitogen-activated protein kinase (MAPK), along with CaMK. This pathway was blocked by dominant-negative Ras and was specifically recruited by depolarizations that produced strong intracellular Ca2+ transients. When both pathways were recruited, phosphorylated CREB (pCREB) formation was overwhelmingly dominated by the CaMK pathway between 0 and 10 min, and by the MAPK pathway at 60 min, whereas the two pathways acted in concert at 30 min. The Ca2+ signals that produced only rapid CaMK signaling to pCREB or both rapid CaMK and slow MAPK signaling deviated significantly for only ≈1 min, yet their differential impact on pCREB extended over a much longer period, between 20 and 60 min and beyond, which is of likely significance for gene expression. The CaMK-dependent MAPK pathway may inform the nucleus about stimulus amplitude. In contrast, the CaMKIV pathway may be well suited to conveying information on the precise timing of localized synaptic stimuli, befitting its greater speed and sensitivity, whereas the previously described calcineurin pathway may carry information about stimulus duration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cascade regulatory circuits have been described that control numerous cell processes, and may provide models for the design of artificial circuits with novel properties. Here we describe the design of a transcriptional regulatory cascade to amplify the cell response to a given signal. We used the salicylate-responsive activators of Pseudomonas putida NahR of the naphthalene degradation plasmid NAH7 and XylS2, a mutant regulator of the TOL plasmid for catabolism of m-xylene and their respective cognate promoters Psal and Pm. Control of the expression of xylS2 with the nahR/Psal system permitted either their selective activation with specific effectors for each protein or the simultaneous activation of both of them with salicylate. When cells face the common effector of the two regulators, both the increase in XylS2 concentration and the stimulation of its activity act synergistically on the Pm promoter, amplifying the gene expression capacity by at least one order of magnitude with respect to the individual systems. By changing the hierarchy of regulators, we showed that the specific features of the downstream regulator were crucial for the amplification effect. Directed changes in the effector profile of the regulators allowed the extension of the amplifying system to other molecular signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross-sectional positron emission tomography (PET) studies find that cognitively normal carriers of the apolipoprotein E (APOE) ɛ4 allele, a common Alzheimer's susceptibility gene, have abnormally low measurements of the cerebral metabolic rate for glucose (CMRgl) in the same regions as patients with Alzheimer's dementia. In this article, we characterize longitudinal CMRgl declines in cognitively normal ɛ4 heterozygotes, estimate the power of PET to test the efficacy of treatments to attenuate these declines in 2 years, and consider how this paradigm could be used to efficiently test the potential of candidate therapies for the prevention of Alzheimer's disease. We studied 10 cognitively normal ɛ4 heterozygotes and 15 ɛ4 noncarriers 50–63 years of age with a reported family history of Alzheimer's dementia before and after an interval of approximately 2 years. The ɛ4 heterozygotes had significant CMRgl declines in the vicinity of temporal, posterior cingulate, and prefrontal cortex, basal forebrain, parahippocampal gyrus, and thalamus, and these declines were significantly greater than those in the ɛ4 noncarriers. In testing candidate primary prevention therapies, we estimate that between 50 and 115 cognitively normal ɛ4 heterozygotes are needed per active and placebo treatment group to detect a 25% attenuation in these CMRgl declines with 80% power and P = 0.005 in 2 years. Assuming these CMRgl declines are related to the predisposition to Alzheimer's dementia, this study provides a paradigm for testing the potential of treatments to prevent the disorder without having to study thousands of research subjects or wait many years to determine whether or when treated individuals develop symptoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fabry disease is a lipid storage disorder resulting from mutations in the gene encoding the enzyme α-galactosidase A (α-gal A; EC 3.2.1.22). We previously have demonstrated long-term α-gal A enzyme correction and lipid reduction mediated by therapeutic ex vivo transduction and transplantation of hematopoietic cells in a mouse model of Fabry disease. We now report marked improvement in the efficiency of this gene-therapy approach. For this study we used a novel bicistronic retroviral vector that engineers expression of both the therapeutic α-gal A gene and the human IL-2Rα chain (huCD25) gene as a selectable marker. Coexpression of huCD25 allowed selective immunoenrichment (preselection) of a variety of transduced human and murine cells, resulting in enhanced intracellular and secreted α-gal A enzyme activities. Of particular significance for clinical applicability, mobilized CD34+ peripheral blood hematopoietic stem/progenitor cells from Fabry patients have low-background huCD25 expression and could be enriched effectively after ex vivo transduction, resulting in increased α-gal A activity. We evaluated effects of preselection in the mouse model of Fabry disease. Preselection of transduced Fabry mouse bone marrow cells elevated the level of multilineage gene-corrected hematopoietic cells in the circulation of transplanted animals and improved in vivo enzymatic activity levels in plasma and organs for more than 6 months after both primary and secondary transplantation. These studies demonstrate the potential of using a huCD25-based preselection strategy to enhance the clinical utility of ex vivo hematopoietic stem/progenitor cell gene therapy of Fabry disease and other disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lec35 gene product (Lec35p) is required for utilization of the mannose donor mannose-P-dolichol (MPD) in synthesis of both lipid-linked oligosaccharides (LLOs) and glycosylphosphatidylinositols, which are important for functions such as protein folding and membrane anchoring, respectively. The hamster Lec35 gene is shown to encode the previously identified cDNA SL15, which corrects the Lec35 mutant phenotype and predicts a novel endoplasmic reticulum membrane protein. The mutant hamster alleles Lec35.1 and Lec35.2 are characterized, and the human Lec35 gene (mannose-P-dolichol utilization defect 1) was mapped to 17p12-13. To determine whether Lec35p was required only for MPD-dependent mannosylation of LLO and glycosylphosphatidylinositol intermediates, two additional lipid-mediated reactions were investigated: MPD-dependent C-mannosylation of tryptophanyl residues, and glucose-P-dolichol (GPD)-dependent glucosylation of LLO. Both were found to require Lec35p. In addition, the SL15-encoded protein was selective for MPD compared with GPD, suggesting that an additional GPD-selective Lec35 gene product remains to be identified. The predicted amino acid sequence of Lec35p does not suggest an obvious function or mechanism. By testing the water-soluble MPD analog mannose-β-1-P-citronellol in an in vitro system in which the MPD utilization defect was preserved by permeabilization with streptolysin-O, it was determined that Lec35p is not directly required for the enzymatic transfer of mannose from the donor to the acceptor substrate. These results show that Lec35p has an essential role for all known classes of monosaccharide-P-dolichol-dependent reactions in mammals. The in vitro data suggest that Lec35p controls an aspect of MPD orientation in the endoplasmic reticulum membrane that is crucial for its activity as a donor substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human synovial sarcoma has been shown to exclusively harbor the chromosomal translocation t(X;18) that produces the chimeric gene SYT-SSX. However, the role of SYT-SSX in cellular transformation remains unclear. In this study, we have established 3Y1 rat fibroblast cell lines that constitutively express SYT, SSX1, and SYT-SSX1 and found that SYT-SSX1 promoted growth rate in culture, anchorage-independent growth in soft agar, and tumor formation in nude mice. Deletion of the N-terminal 181 amino acids of SYT-SSX1 caused loss of its transforming activity. Furthermore, association of SYT-SSX1 with the chromatin remodeling factor hBRM/hSNF2α, which regulates transcription, was demonstrated in both SYT-SSX1-expressing 3Y1 cells and in the human synovial sarcoma cell line HS-SY-II. The binding region between the two molecules was shown to reside within the N-terminal 181 amino acids stretch (aa 1–181) of SYT-SSX1 and 50 amino acids (aa 156–205) of hBRM/hSNF2α and we found that the overexpression of this binding region of hBRM/hSNF2α significantly suppressed the anchorage-independent growth of SYT-SSX1-expressing 3Y1 cells. To analyze the transcriptional regulation by SYT-SSX1, we established conditional expression system of SYT-SSX1 and examined the gene expression profiles. The down-regulation of potential tumor suppressor DCC was observed among 1,176 genes analyzed by microarray analysis, and semi-quantitative reverse transcription–PCR confirmed this finding. These data clearly demonstrate transforming activity of human oncogene SYT-SSX1 and also involvement of chromatin remodeling factor hBRM/hSNF2α in human cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arabidopsis CBF transcriptional activators bind to the CRT/DRE regulatory element present in the promoters of many cold-regulated genes and stimulate their transcription. Expression of the CBF1 proteins in yeast activates reporter genes carrying a minimal promoter with the CRT/DRE as an upstream regulatory element. Here we report that this ability of CBF1 is dependent upon the activities of three key components of the yeast Ada and SAGA complexes, namely the histone acetyltransferase (HAT) Gcn5 and the transcriptional adaptor proteins Ada2 and Ada3. This result suggested that CBF1 might function through the action of similar complexes in Arabidopsis. In support of this hypothesis we found that Arabidopsis has a homolog of the GCN5 gene and two homologs of ADA2, the first report of multiple ADA2 genes in an organism. The Arabidopsis GCN5 protein has intrinsic HAT activity and can physically interact in vitro with both the Arabidopsis ADA2a and ADA2b proteins. In addition, the CBF1 transcriptional activator can interact with the Arabidopsis GCN5 and ADA2 proteins. We conclude that Arabidopsis encodes HAT-containing adaptor complexes that are related to the Ada and SAGA complexes of yeast and propose that the CBF1 transcriptional activator functions through the action of one or more of these complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intracellular pathogen Trypanosoma cruzi is the etiological agent of Chagas’ disease. We have isolated a full-length cDNA encoding uracil-DNA glycosylase (UDGase), a key enzyme involved in DNA repair, from this organism. The deduced protein sequence is highly conserved at the C-terminus of the molecule and shares key residues involved in binding or catalysis with most of the UDGases described so far, while the N-terminal part is highly variable. The gene is single copy and is located on a chromosome of ∼1.9 Mb. A His-tagged recombinant protein was overexpressed, purified and used to raise polyclonal antibodies. Western blot analysis revealed the existence of a single UDGase species in parasite extracts. Using a specific ethidium bromide fluorescence assay, recombinant T.cruzi UDGase was shown to specifically excise uracil from DNA. The addition of both Leishmania major AP endonuclease and exonuclease III, the major AP endonuclease from Escherichia coli, produces stimulation of UDGase activity. This activation is specific for AP endonuclease and suggests functional communication between the two enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Typical general transcription factors, such as TATA binding protein and TFII B, have not yet been identified in any member of the Trypanosomatidae family of parasitic protozoa. Interestingly, mRNA coding genes do not appear to have discrete transcriptional start sites, although in most cases they require an RNA polymerase that has the biochemical properties of eukaryotic RNA polymerase II. A discrete transcription initiation site may not be necessary for mRNA synthesis since the sequences upstream of each transcribed coding region are trimmed from the nascent transcript when a short m7G-capped RNA is added during mRNA maturation. This short 39 nt m7G-capped RNA, the spliced leader (SL) sequence, is expressed as an ∼100 nt long RNA from a set of reiterated, though independently transcribed, genes in the trypanosome genome. Punctuation of the 5′ end of mRNAs by a m7G cap-containing spliced leader is a developing theme in the lower eukaryotic world; organisms as diverse as Euglena and nematode worms, including Caenorhabditis elegans, utilize SL RNA in their mRNA maturation programs. Towards understanding the coordination of SL RNA and mRNA expression in trypanosomes, we have begun by characterizing SL RNA gene expression in the model trypanosome Leptomonas seymouri. Using a homologous in vitro transcription system, we demonstrate in this study that the SL RNA is transcribed by RNA polymerase II. During SL RNA transcription, accurate initiation is determined by an initiator element with a loose consensus of CYAC/AYR(+1). This element, as well as two additional basal promoter elements, is divergent in sequence from the basal transcription elements seen in other eukaryotic gene promoters. We show here that the in vitro transcription extract contains a binding activity that is specific for the initiator element and thus may participate in recruiting RNA polymerase II to the SL RNA gene promoter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doxycycline (Dox)-sensitive co-regulation of two transcriptionally coupled transgenes was investigated in the mouse. For this, we generated four independent mouse lines carrying coding regions for green fluorescent protein (GFP) and β-galactosidase in a bicistronic, bidirectional module. In all four lines the expression module was silent but was activated when transcription factor tTA was provided by the α-CaMKII-tTA transgene. In vivo analysis of GFP fluorescence, β-galactosidase and immunochemical stainings revealed differences in GFP and β-galactosidase levels between the lines, but comparable patterns of expression. Strong signals were found in neurons of the olfactory system, neocortical, limbic lobe and basal ganglia structures. Weaker expression was limited to thalamic, pontine and medullary structures, the spinal cord, the eye and to some Purkinje cells in the cerebellum. Strong GFP signals were always accompanied by intense β-galactosidase activity, both of which could be co-regulated by Dox. We conclude that the tTA-sensitive bidirectional expression module is well suited to express genes of interest in a regulated manner and that GFP can be used to track transcriptional activity of the module in the living mouse.