965 resultados para forest ecosystem
Resumo:
An inventory of isolated tree stands surrounded by desert pastures in Southern Tibet (A.R. Xizang, China) revealed more than 50 sites with vigorous trees of Juniperus convallium Rehder & E.H. Wilson and Juniperus tibetica Kom and additional more than 10 records where juniper trees had been destroyed between 1959-1976. The tree stands are not restricted to any specific habitat, and occur within an area stretching 650 km westwards from the current forest border of Southern Tibet. The trees are religious landmarks of the Tibetan Buddhists. The highest trees were found at an elevation of 4,860 m. Vegetation records, rainfall correlations and temperature data collected by local climate stations and successful reforestation trials since 1999 indicate that forest relicts fragmented through human interference could regenerate if current cattle grazing and deforestation practices are halted. The drought line of Juniperus forests in Southern Tibet is approximately 200-250 mm/a. A first pollen diagram from Lhasa shows forest decline associated with the presence of humans since at least 4,600 yr BP. The currently degraded commons developed in the last 600 yr. To date, no findings of remains of ancient forests in the Central Tibetan Highlands of the Changtang have been reported.
Resumo:
High-resolution sampling, measurements of organic carbon contents and C-14 signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of C-14 tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12x10(4) kg C hm(-2) to 30.75x10(4) kg C hm(-2) in the alpine meadow ecosystems, with an average of 26.86x10(4) kg C hm(-2). Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m(-2) a(-1) to 254.93 gC m(-2) a(-1), with an average of 191.23 g C m(-2) a(-1). The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m(-2) a(-1) to 181 g C m(-2) a(-1). More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%. 81.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research.
Resumo:
We measured ecosystem CO2 fluxes for an alpine shrubland on the north-eastern Tibetan Plateau, Qinghai, China. The study is to understand (1) the seasonal variation of CO2 flux and (2) how environmental factors affect the seasonality of CO2 exchange in the alpine ecosystem. Daytime ecosystem respiration was extrapolated from the relationship between temperature and nighttime CO2 fluxes under high turbulent conditions.Seasonal patterns of gross ecosystem production, ecosystem respiration and net ecosystem CO2 exchange followed highly the seasonal change of aboveground biomass in the alpine shrubland. The net ecosystem CO2 exchange was mainly controlled by the variation of photosynthetic photon flux density, while the ecosystem respiration was closely correlated to the soil temperature at 5-cm depth. Integrated values of gross ecosystem production, ecosystem respiration and net ecosystem CO2 exchange for the period from November 1, 2002 to October 31 2003 were estimated to be 1418, 1155 and 222 g CO2 m(-2) yr(-1), respectively.
Resumo:
Thus far, grassland ecosystem research has mainly been focused on low-lying grassland areas, whereas research on high-altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai-Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37 degrees 36'N, 101 degrees 18'E; 325 above sea level [a. s. l.]) on the Qinghai-Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (R-eco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were -58.5 and -75.5 g C m(-2), respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4-5 g C m(-2) day(-1)) each of the 2 years. Also, the integrated night-time NEE reached comparable peak values (1.5-2 g C m(-2) day(-1)) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, R-eco was an exponential function of soil temperature, but with season-dependent values of Q(10). The temperature-dependent respiration model failed immediately after rain events, when large pulses of R-eco were observed. Thus, for this alpine shrubland in Qinghai-Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem R-eco and NEE.
Resumo:
The meadow ecosystem on the Qinghai-Tibetan Plateau is considered to be sensitive to climate change. An understanding of the alpine meadow ecosystem is therefore important for predicting the response of ecosystems to climate change. In this study, we use the coefficients of variation (Cv) and stability (E) obtained from the Haibei Alpine Meadow Ecosystem Research Station to characterize the ecosystem stability. The results suggest that the net primary production of the alpine meadow ecosystem was more stable (Cv = 13.18%) than annual precipitation (Cv = 16.55%) and annual mean air temperature (Cv= 28.82%). The net primary production was insensitive to either the precipitation (E = 0.0782) or air temperature (E = 0.1113). In summary, the alpine meadow ecosystem on the Qinghai-Tibetan Plateau is much stable. Comparison of alpine meadow ecosystem stability with other five natural grassland ecosystems in Israel and southern African indicates that the alpine meadow ecosystem on the Qinghai-Tibetan Plateau is the most stable ecosystem. The alpine meadow ecosystem with relatively simple structure has high stability, which indicates that community stability is not only correlated with biodiversity and community complicity but also with environmental stability. An average oscillation cycles of 3-4 years existed in annual precipitation, annual mean air temperature, net primary production and the population size of consumers at the Haibei natural ecosystem. The high stability of the alpine meadow ecosystem may be resulting also from the adaptation of the ecosystem to the alpine environment.
Resumo:
Although respiration of organisms and biomass as well as fossil fuel burning industrial production are identified as the major sources, the CO2 flux is still unclear due to the lack of proper measurements. A mass-balance approach that exploits differences in the carbon isotopic signature (delta(13)C) of CO2 Sources and sinks was introduced and may provide a means of reducing uncertainties in the atmospheric budget. delta(13)C measurements of atmospheric CO2 yielded an average of - 10.3 parts per thousand relative to the Peedee Belemnite standard; soil and plants had a narrow range from -25.09 parts per thousand to -26.51 parts per thousand and averaged at -25.80 parts per thousand. Based on the fact of steady fractionation and enrichment during respiration of mitochondria, we obtained the emission Of CO2 of 35.451 mol m(-2) a(-1) and CO2 flux of 0.2149 mu mol m(-2) s(-)1. The positive CO2 flux indicated the Haibei Alpine Meadow Ecosystem a source rather than a sink. The mass-balance model can be applied for other ecosystem even global carbon cycles because it neglects the complicated process of carbon metabolism, however just focuses on stable carbon isotopic compositions in any of compartments of carbon sources and sinks. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Stable carbon and nitrogen isotope ratios of single tissues or whole bodies were analyzed to establish trophic positions of main consumers living at the alpine meadow ecosystem in the Tibetan Plateau. The results demonstrated that delta C-13 and delta N-15 values of vertebrates showed great variations and ranged from -26.83 to -22.51 parts per thousand and from 2.33 to 8.44 parts per thousand, respectively. Plateau pika, root vole, plateau hare, infants of rodents and hatchlings of passerine bird species had the lowest delta C-13 and delta N-15 values. delta C-13 and delta N-15 values of omnivorous and insectivorous birds and amphibians showed intermediate. Carnivorous species, steppe polecat and Upland buzzard, and omnivorous Robin accentor and White wagtail possessed extremely higher VC and delta N-15 values. Omnivorous birds captured in earlier year had significantly less negative delta C-13 and greater delta N-15 values than those captured later. Based on steady angular enrichment between trophic levels, an "alpha and vector model" combing delta C-13 and delta N-15 values was introduced to reveal trophic positions, the results indicated that Tibetan sheep, Tibetan yak, plateau pika, root vole, plateau hare, infants of small rodents showed the lowest trophic positions (TP 1.81-2.38). While omnivorous and insectivorous birds, their hatchlings and amphibians showed intermediate trophic positions (TP 2.06-2.89), carnivorous species steppe polecat and Upland buzzard, migrant birds possessed extremely higher trophic positions (TP 2.89-3.05). The isotopic investigation of organisms and the introduced "alpha and vector model" successfully demonstrated the same trophic positions and diet prediction of consumers as nitrogen enrichment model at the alpine meadow ecosystem. Besides of this information, the "alpha and vector model" can also be incorporated into multiple isotope signatures to infer trophic relationships. This angular enrichment model has the potential to address basic ecological questions, such as trophic structure, trophic dynamics, and energy flow in other terrestrial ecosystems of properly handled. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
To assess carbon budget for shrub ecosystems on the Qinghai-Tibet Plateau, CO2 flux was measured with an open-path eddy covariance system for an alpine shrub ecosystem during growing and non-growing seasons. CO2 flux dynamics was distinct between the two seasons. During the growing season from May to September, the ecosystem exhibited net CO2 uptake from 08:00 to 19:00 (Beijing Standard Time), but net CO2 emission from 19:00 to 08:00. Maximum CO2 uptake appeared around 12:00 with values of 0.71, 1,19, 1.46 and 0.67 g CO2 m(-2) h(-1) for June, July, August and September, respectively. Diurnal fluctuation Of CO2 flux showed higher correlation with photosynthetic photon flux density than temperature. The maximum net CO2 influx occurred in August with a value of 247 g CO2 m(-2). The total CO2 uptake by the ecosystem was up to 583 g CO2 m(-2) for the growing season. During the non-growing season from January to April and from October to December, CO2 flux showed small fluctuation with the largest net CO2 efflux of 0.30 g CO2 m(-2) h(-1) in April. The diurnal CO2 flux was close to zero during most time of the day, but showed a small net CO2 eff lux from 11:00 to 18:00. Diurnal CO2 flux, is significantly correlated to diurnal temperature in the non-growing season. The maximum monthly net CO2 eff lux appeared in April, with a value of 105 g CO2 m(-2). The total net CO2 eff lux for the whole non-growing season was 356 g CO2 m(-2).
Resumo:
1. Plateau zokors, Myospalax fontanierii, are the only subterranean herbivores on the Tibetan plateau of China. Although the population biology of plateau zokors has been studied for many years, the interactions between zokors and plants, especially for the maintenance and structure of ecological communities, have been poorly recognized. In the past, plateau zokors have been traditionally viewed as pests, competitors with cattle, and agents of soil erosion, thus eradication programmes have been carried out by local governments and farmers. Zokors are also widely and heavily exploited for their use in traditional Chinese medicine.2. Like other fossorial animals, such as pocket gophers Geomys spp. and prairie dogs Cynomys spp. in similar ecosystems, zokors may act to increase local environmental heterogeneity at the landscape level, aid in the formation, aeration and mixing of soil, and enhance infiltration of water into the soil thus curtailing erosion. The changes that zokors cause in the physical environment, vegetation and soil clearly affect the herbivore food web. Equally, plateau zokors also provide a significant food source for many avian and mammalian predators on the plateau. Zokor control leading to depletion of prey and secondary poisoning may therefore present problems for populations of numerous other animals.3. We highlight the important role plateau zokors play in the Tibetan plateau ecosystem. Plateau zokors should be managed in concert with other comprehensive rangeland treatments to ensure the ecological equilibrium and preservation of native biodiversity, as well as the long-term sustainable use of pastureland by domestic livestock.
Resumo:
Alpine meadow and shrub are the main pasture types on the Tibetan Plateau, and they cover about 35% of the total land area. In order to understand the structural and functional aspects of the alpine ecosystem and to promote a sustainable animal production system, the Haibei Alpine Meadow Research Station was established in 1976. A series of intensive studies on ecosystem structure and function, including the energy flow and nutrient cycling of the ecosystem, were the main tasks during the first 10 years. Meanwhile, studies with 5 different grazing intensities on both summer and winter pasture have been conducted. In the early years of the 1990s, the research station started to focus its research work on global warming, biodiversity and sustainable animal production systems in pastoral areas. Various methods for improving degraded pasturelands have been developed in the region.
Resumo:
It is known that global climate changed from the early Tertiary “Green House” to the Quaternary “Ice House” of cyclic glacial-interglacial climatic changes. Since the middle Pleistocene, the climate cycles changed from 40 kyr to 100 kyr, and the amplitudes of climatic fluctuations increased significantly. Therefore, it is important to study the climate changes since the middle Pleistocene. The loess-paleosol sequence in China is considered as one of the most continuous continental records of the last 2.58 Ma. Paleoclimatic and environmental changes have been widely extracted through various climatic parameters. However, the history of paleovegetation on the Loess Plateau still remains unclear. Did an extensive broadleaf forest ever exist on the Loess Plateau? Pollen preserved in the loess and paleosol provides a direct record for vegetation and paleoenvironmental change on the Plateau. However, because it is difficult to extract sufficient pollen grains from loess, the pollen record since the middle Pleistocene especially in the central part of the Chinese Loess Plateau has not been well studied. So we preliminarily focus on the palynological records of the loess-paleosol sequence spanning the last 630 kyr at Luochuan and aim to understand the evolution of vegetation and climate change on the Chinese Loess Plateau. The main results and conclusions are as follows: 1. The palynological results show that the grassland has been a dominant vegetation in the Luochuan area since 630 kyr, even during the intervals of relatively warm and wet climatic conditions. 2. The pollen concentration of Luochuan section sharply decreases from the bottom of S1 to downward depth. This decrease can be attributed to depositional environment rather than climate change. In loess, not only oxidation, but also the PH of deposits and bacteria or fungi have been able to degrade sporopollenin. 3. The paleoclimatic condition during S4 stage, characterized with warmer condition during the early stage, was warmer and wetter than that during S5 in Luochuan area. Paleoclimate was warmer and wetter during the early stage of S5 and became colder and drier later. The special pedogenic features of S5-I can be attributed to a prolonged pedogenic duration rather than a warm-wet climate. 4. Evidence from pollen assemblage suggests that the Holocene vegetation has been affected by human impacts, especially after the Yangshao Culture. 5. The present steppe environment on the loess plateau is mainly due to natural conditions. Temperature, seasonal precipitation and soil structure are three important factors which control the vegetation type. 6. The vegetation on the loess plateau is characterized with zonal or azonal distribution. So local conditions should be taken into account when recover natural vegetation. Finally, the restoration and reconstruction of ecosystem on the loess plateau area should be focused on planting grassland rather than forests.
Chemical and strontium isotope characterization of rainwater in karst virgin forest, Southwest China