977 resultados para film theory
Resumo:
Conceptualization in theory development has received limited consideration despite its frequently stressed importance in Information Systems research. This paper focuses on the role of construct clarity in conceptualization, arguing that construct clarity should be considered an essential criterion for evaluating conceptualization and that a focus on construct clarity can advance conceptualization methodology. Drawing from Facet Theory literature, we formulate a set of principles for assessing construct clarity, particularly regarding a construct’s relationships to its extant related constructs. Conscious and targeted attention to this criterion can promote a research ecosystem more supportive of knowledge accumulation.
Resumo:
The choice of ethanol (C2H5OH) as carbon source in the Chemical Vapor Deposition (CVD) of graphene on copper foils can be considered as an attractive alternative among the commonly used hydrocarbons, such as methane (CH4) [1]. Ethanol, a safe, low cost and easy handling liquid precursor, offers fast and efficient growth kinetics with the synthesis of fullyformed graphene films in just few seconds [2]. In previous studies of graphene growth from ethanol, various research groups explored temperature ranges lower than 1000 °C, usually reported for methane-assisted CVD. In particular, the 650–850 °C and 900 °C ranges were investigated, respectively for 5 and 30 min growth time [3, 4]. Recently, our group reported the growth of highly-crystalline, few-layer graphene by ethanol-CVD in hydrogen flow (1– 100 sccm) at high temperatures (1000–1070 °C) using growth times typical of CH4-assisted synthesis (10–30 min) [5]. Furthermore, a synthesis time between 20 and 60 s in the same conditions was explored too. In such fast growth we demonstrated that fully-formed graphene films can be grown by exposing copper foils to a low partial pressure of ethanol (up to 2 Pa) in just 20 s [6] and we proposed that the rapid growth is related to an increase of the Cu catalyst efficiency due weak oxidizing nature of ethanol. Thus, the employment of such liquid precursor, in small concentrations, together with a reduced time of growth and very low pressure leads to highly efficient graphene synthesis. By this way, the complete coverage of a copper catalyst surface with high spatial uniformity can be obtained in a considerably lower time than when using methane.
Resumo:
We consider the growth of an isolated precipitate when the matrix diffusivity depends on the composition. We have simulated precipitate growth using the Cahn-Hilliard model, and find good agreement between our results and those from a sharp interface theory for systems with and without a dilatational misfit. With misfit, we report (and rationalize) an interesting difference between systems with a constant diffusivity and those with a variable diffusivity in the matrix.
Resumo:
Adult day care centers provide a means whereby frail or disabled older people can remain living at home particularly when their family care-givers engage in waged work. In Taiwan, adult day care services appear to meet the cultural needs of both older people and their families for whom filial care is vital. Little research attention has been paid to the use of day care services in Taiwan, the uptake rate of which is low. This grounded theory study explored the ways in which older people and family care-givers construct meanings around the use of day care services in Taiwan. The research methodology drew on the theoretical tenets of symbolic interactionism and methods were informed by the grounded theory. In-depth interviews with 30 participants were undertaken. Reconstructing identity in a shifting world is the core category of the study and reflects a process of reframing whereby older people came to new definitions of social responsibility and independence within the context of the day care center. The implications of the findings is that the older people, rather than seeking to be relieved of social responsibilities, worked very hard to frame and reframe a social role. Rather than letting the institutions undermine or disrupt their identity, the older people worked to actively negotiate and redefine the meaning of self. Thus, although reluctant to come to use the services at the outset, they found a way to manage their lives independently. Social roles and responsibilities as older parents were retained. This study explored the process of meaning construction of day care use and the ways in which this process entailed a reconstruction of the identities of the participants. The evidence from this study underlines the importance of recognizing and acknowledging subjectively conceived identities as work that older people undertake, when in care, to render their lives meaningful.
Resumo:
Bacterial persistent infections are responsible for a significant amount of the human morbidity and mortality. Unlike acute bacterial infections, it is very difficult to treat persistent bacterial infections (e.g. tuberculosis). Knowledge about the location of pathogenic bacteria during persistent infection will help to treat such conditions by designing novel drugs which can reach such locations. In this study, events of bacterial persistent infections were analyzed using game theory. A game was defined where the pathogen and the host are the two players with a conflict of interest. Criteria for the establishment of Nash equilibrium were calculated for this game. This theoretical model, which is very simple and heuristic, predicts that during persistent infections pathogenic bacteria stay in both intracellular and extracellular compartments of the host. The result of this study implies that a bacterium should be able to survive in both intracellular and extracellular compartments of the host in order to cause persistent infections. This explains why persistent infections are more often caused by intracellular pathogens like Mycobacterium and Salmonella. Moreover, this prediction is in consistence with the results of previous experimental studies.
Resumo:
Stone Baby: An Exploration of Affect and Trauma in Visual Art was held at the Block, QUT Creative Industries Precinct on August 27-28, 2014. At the conclusion of my Masters project, this exhibition was a showcase of the outcomes of my material and digital explorations in the form of installation, sculpture and film. My primary motivation can be described as a relational and ethical attempt to find a balance between the erotic and the aggressive. This is experienced in the self as feelings of attraction and repulsion in response to the new and unknown "other". Consequently creative practice is necessarily a complex affair that is experienced as a completely immersive and self-contained psychological space. It is within this space that both physical sensation and raw emotion are able to tangibly and conceptually interact with psychoanalytic theory, and concrete materials video and sound.
Resumo:
Functional Imagery Training (FIT) is a new theory-based, manualized intervention that trains positive goal imagery. Multisensory episodic imagery of proximal personal goals is elicited and practised, to sustain motivation and compete with less functional cravings. This study tested the impact of a single session of FIT plus a booster phone call on snacking. In a stepped-wedge design, 45 participants who wanted to lose weight or reduce snacking were randomly assigned to receive a session of FIT immediately or after a 2-week delay. High-sugar and high-fat snacks were recorded using timeline follow back for the previous 3 days, at baseline, 2 and 4 weeks. At 2 weeks, snacking was lower in the immediate group than in the delayed group, and the reduction after FIT was replicated in the delayed group between 2 and 4 weeks. Frequencies of motivational thoughts about snack reduction rose following FIT for both groups, and this change correlated with reductions in snacking and weight loss. By showing that FIT can support change in eating behaviours, these findings show its potential as a motivational intervention for weight management.
Resumo:
We present a new approach to Hamilton's theory of turns for the groups SO(3) and SU(2) which renders their properties, in particular their composition law, nearly trivial and immediately evident upon inspection. We show that the entire construction can be based on binary rotations rather than mirror reflections.
Resumo:
A reduced 3D continuum model of dynamic piezoelectricity in a thin-film surface-bonded to the substrate/host is presented in this article. While employing large area flexible thin piezoelectric films for novel applications in device/diagnostics, the feasibility of the proposed model in sensing the surface and/or sub-surface defects is demonstrated through simulations - which involve metallic beams with cracks and composite beam with delaminations of various sizes. We have introduced a set of electrical measures to capture the severity of the damage in the existing structures. Characteristics of these electrical measures in terms of the potential difference and its spatial gradients are illustrated in the time domain. Sensitivity studies of the proposed measures in terms of the defected areas and their region of occurence relative to the sensing film are reported. The simulations' results for electrical measures for damaged hosts/substrates are compared with those due to undamaged hosts/substrates, which show monotonicity with high degree of sensitivity to variations in the damage parameters.
Resumo:
γ-Y 2Si 2O 7 is a promising candidate material both for hightemperature structural applications and as an environmental/thermal barrier coating material due to its unique properties such as high melting point, machinability, thermal stability, low linear thermal expansion coefficient (3.9×10 -6/K, 200°-1300°C), and low thermal conductivity (<3.0 W/ṁK above 300°C). The hot corrosion behavior of γ-Y 2Si 2O 7 in thin-film molten Na 2SO 4 at 850°-1000°C for 20 h in flowing air was investigated using a thermogravimetric analyzer (TGA) and a mass spectrometer (MS). γ-Y 2Si 2O 7 exhibited good resistance against Na 2SO 4 molten salt. The kinetic curves were well fitted by a paralinear equation: the linear part was caused by the evaporation of Na2SO4 and the parabolic part came from gas products evolved from the hotcorrosion reaction. A thin silica film formed under the corrosion scale was the key factor for retarding the hot corrosion. The apparent activation energy for the corrosion of γ-Y 2Si 2O 7 in Na 2SO 4 molten salt with flowing air was evaluated to be 255 kJ/mol.
Resumo:
By using the algebraic locus of the coupler curve of a PRRP planar linkage, in this paper, a kinematic theory is developed for planar, radially foldable closed-loop linkages. This theory helps derive the previously invented building blocks, which consist of only two inter-connected angulated elements, for planar foldable structures. Furthermore, a special case of a circumferentially actuatable foldable linkage (which is different from the previously known cases) is derived from the theory, A quantitative description of some known and some new properties of planar foldable linkages, including the extent of foldability, shape-preservation of the interior polygons, multi-segmented assemblies and heterogeneous circumferential arrangemants, is also presented. The design equations derived here make the conception of even complex planar radially foldable linkages systematic and straightforward. Representative examples are presented to illustrate the usage of the design equations and the construction of prototypes. The current limitations and some possible extensions of the theory are also noted. (c) 2007, Elsevier Ltd. All ri-hts reserved.
Resumo:
We report the binding energy of various nucleobases (guanine (G), adenine (A), thymine (T) and cytosine (C)) with (5,5) single-walled carbon nanotube (SWNT) calculated using first-principle Hartre–Fock method (HF) together with classical force field. The binding energy without including the solvation effects of water decreases in the order G>A>T>C. The inclusion of solvation energy changes the order of binding preference to be G>T>A>C. Using isothermal titration (micro) calorimetry experiments, we also show the relative binding affinity to be T>A>C, in agreement with our calculations.
Resumo:
The cyclically varying magnetic field of the Sun is believed to be produced by the hydromagnetic dynamo process. We first summarize the relevant observational data pertaining to sunspots and solar cycle. Then we review the basic principles of MHD needed to develop the dynamo theory. This is followed by a discussion how bipolar sunspots form due to magnetic buoyancy of flux tubes formed at the base of the solar convection zone. Following this, we come to the heart of dynamo theory. After summarizing the basic ideas of a turbulent dynamo and the basic principles of its mean field formulation, we present the famous dynamo wave solution, which was supposed to provide a model for the solar cycle. Finally we point out how a flux transport dynamo can circumvent some of the difficulties associated with the older dynamo models.
Resumo:
With high-resolution photoemission spectroscopy measurements, the density of states (DOS) near the Fermi level (E-F) of double perovskite Sr2FeMoO6 having different degrees of Fe/Mo antisite disorder has been investigated with varying temperature. The DOS near E-F showed a systematic depletion with increasing degree of disorder, and recovered with increasing temperature. Altshuler-Aronov (AA) theory of disordered metals well explains the dependences of the experimental results. Scaling analysis of the spectra provides experimental indication for the functional form of the AA DOS singularity.
Resumo:
Carbon nanotubes (CNTs) have emerged as promising candidates for biomedical x-ray devices and other applications of field emission. CNTs grown/deposited in a thin film are used as cathodes for field emission. In spite of the good performance of such cathodes, the procedure to estimate the device current is not straightforward and the required insight towards design optimization is not well developed. In this paper, we report an analysis aided by a computational model and experiments by which the process of evolution and self-assembly (reorientation) of CNTs is characterized and the device current is estimated. The modeling approach involves two steps: (i) a phenomenological description of the degradation and fragmentation of CNTs and (ii) a mechanics based modeling of electromechanical interaction among CNTs during field emission. A computational scheme is developed by which the states of CNTs are updated in a time incremental manner. Finally, the device current is obtained by using the Fowler–Nordheim equation for field emission and by integrating the current density over computational cells. A detailed analysis of the results reveals the deflected shapes of the CNTs in an ensemble and the extent to which the initial state of geometry and orientation angles affect the device current. Experimental results confirm these effects.