905 resultados para extraction
Resumo:
Lots of work has been done in texture feature extraction for rectangular images, but not as much attention has been paid to the arbitrary-shaped regions available in region-based image retrieval (RBIR) systems. In This work, we present a texture feature extraction algorithm, based on projection onto convex sets (POCS) theory. POCS iteratively concentrates more and more energy into the selected coefficients from which texture features of an arbitrary-shaped region can be extracted. Experimental results demonstrate the effectiveness of the proposed algorithm for image retrieval purposes.
Resumo:
Fast Classification (FC) networks were inspired by a biologically plausible mechanism for short term memory where learning occurs instantaneously. Both weights and the topology for an FC network are mapped directly from the training samples by using a prescriptive training scheme. Only two presentations of the training data are required to train an FC network. Compared with iterative learning algorithms such as Back-propagation (which may require many hundreds of presentations of the training data), the training of FC networks is extremely fast and learning convergence is always guaranteed. Thus FC networks may be suitable for applications where real-time classification is needed. In this paper, the FC networks are applied for the real-time extraction of gene expressions for Chlamydia microarray data. Both the classification performance and learning time of the FC networks are compared with the Multi-Layer Proceptron (MLP) networks and support-vector-machines (SVM) in the same classification task. The FC networks are shown to have extremely fast learning time and comparable classification accuracy.
Resumo:
In this paper we present an algorithm as the combination of a low level morphological operation and model based Global Circular Shortest Path scheme to explore the segmentation of the Right Ventricle. Traditional morphological operations were employed to obtain the region of interest, and adjust it to generate a mask. The image cropped by the mask is then partitioned into a few overlapping regions. Global Circular Shortest Path algorithm is then applied to extract the contour from each partition. The final step is to re-assemble the partitions to create the whole contour. The technique is deemed quite reliable and robust, as this is illustrated by a very good agreement between the extracted contour and the expert manual drawing output.
Resumo:
Information and content integration are believed to be a possible solution to the problem of information overload in the Internet. The article is an overview of a simple solution for integration of information and content on the Web. Previous approaches to content extraction and integration are discussed, followed by introduction of a novel technology to deal with the problems, based on XML processing. The article includes lessons learned from solving issues of changing webpage layout, incompatibility with HTML standards and multiplicity of the results returned. The method adopting relative XPath queries over DOM tree proves to be more robust than previous approaches to Web information integration. Furthermore, the prototype implementation demonstrates the simplicity that enables non-professional users to easily adopt this approach in their day-to-day information management routines.