891 resultados para expert system, fuzzy logic, pan stage models, supervisory control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2013 American Psychological Association.This meta-analysis synthesizes research on the effectiveness of intelligent tutoring systems (ITS) for college students. Thirty-five reports were found containing 39 studies assessing the effectiveness of 22 types of ITS in higher education settings. Most frequently studied were AutoTutor, Assessment and Learning in Knowledge Spaces, eXtended Tutor-Expert System, and Web Interface for Statistics Education. Major findings include (a) Overall, ITS had a moderate positive effect on college students' academic learning (g = .32 to g = .37); (b) ITS were less effective than human tutoring, but they outperformed all other instruction methods and learning activities, including traditional classroom instruction, reading printed text or computerized materials, computer-assisted instruction, laboratory or homework assignments, and no-treatment control; (c) ITS's effectiveness did not significantly differ by different ITS, subject domain, or the manner or degree of their involvement in instruction and learning; and (d) effectiveness in earlier studies appeared to be significantly greater than that in more recent studies. In addition, there is some evidence suggesting the importance of teachers and pedagogy in ITS-assisted learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mathematical simulation of the evacuation process has a wide and largely untapped scope of application within the aircraft industry. The function of the mathematical model is to provide insight into complex behaviour by allowing designers, legislators, and investigators to ask ‘what if’ questions. Such a model, EXODUS, is currently under development, and this paper describes its evolution and potential applications. EXODUS is an egress model designed to simulate the evacuation of large numbers of individuals from an enclosure, such as an aircraft. The model tracks the trajectory of each individual as they make their way out of the enclosure or are overcome by fire hazards, such as heat and toxic gases. The software is expert system-based, the progressive motion and behaviour of each individual being determined by a set of heuristics or rules. EXODUS comprises five core interacting components: (i) the Movement Submodel — controls the physical movement of individual passengers from their current position to the most suitable neighbouring location; (ii) the Behaviour Submodel — determines an individual's response to the current prevailing situation; (iii) the Passenger Submodel — describes an individual as a collection of 22 defining attributes and variables; (iv) the Hazard Submodel — controls the atmospheric and physical environment; and (v) the Toxicity Submodel — determines the effects on an individual exposed to the fire products, heat, and narcotic gases through the Fractional Effective Dose calculations. These components are briefly described and their capabilities and limitations are demonstrated through comparison with experimental data and several hypothetical evacuation scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FUELCON is an expert system in nuclear engineering. Its task is optimized refueling-design, which is crucial to keep down operation costs at a plant. FUELCON proposes sets of alternative configurations of fuel-allocation; the fuel is positioned in a grid representing the core of a reactor. The practitioner of in-core fuel management uses FUELCON to generate a reasonably good configuration for the situation at hand. The domain expert, on the other hand, resorts to the system to test heuristics and discover new ones, for the task described above. Expert use involves a manual phase of revising the ruleset, based on performance during previous iterations in the same session. This paper is concerned with a new phase: the design of a neural component to carry out the revision automatically. Such an automated revision considers previous performance of the system and uses it for adaptation and learning better rules. The neural component is based on a particular schema for a symbolic to recurrent-analogue bridge, called NIPPL, and on the reinforcement learning of neural networks for the adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FUELCON is an expert system for optimized refueling design in nuclear engineering. This task is crucial for keeping down operating costs at a plant without compromising safety. FUELCON proposes sets of alternative configurations of allocation of fuel assemblies that are each positioned in the planar grid of a horizontal section of a reactor core. Results are simulated, and an expert user can also use FUELCON to revise rulesets and improve on his or her heuristics. The successful completion of FUELCON led this research team into undertaking a panoply of sequel projects, of which we provide a meta-architectural comparative formal discussion. In this paper, we demonstrate a novel adaptive technique that learns the optimal allocation heuristic for the various cores. The algorithm is a hybrid of a fine-grained neural network and symbolic computation components. This hybrid architecture is sensitive enough to learn the particular characteristics of the ‘in-core fuel management problem’ at hand, and is powerful enough to use this information fully to automatically revise heuristics, thus improving upon those provided by a human expert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a project aimed at making Computational Fluid Dynamics (CFD) based fire simulation accessible to members of the fire safety engineering community. Over the past few years, the practise of CFD based fire simulation has begun the transition from the confines of the research laboratory to the desk of the fire safety engineer. To a certain extent, this move has been driven by the demands of performance based building codes. However, while CFD modelling has many benefits over other forms of fire simulation, it requires a great deal of expertise on the user’s part to obtain reasonable simulation results. The project described in this paper, SMARTFIRE, aims to relieve some of this dependence on expertise so that users are less concerned with the details of CFD analysis and can concentrate on results. This aim is achieved by the use of an expert system component as part of the software suite which takes some of the expertise burden away from the user. SMARTFIRE also makes use of the latest developments in CFD technology in order to make the CFD analysis more efficient. This paper describes design considerations of the SMARTFIRE software, emphasising its open architecture, CFD engine and knowledge based systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a few architectural concepts from FUELGEN, that generates a "cloud" of reload patterns, like the generator in the FUELCON expert system, but unlike that generator, is based on a genetic algorithm. There are indications FUELGEN may outperform FUELCON and other tools as reported in the literature, in well-researched case studies, but careful comparisons have to be carried out. This paper complements the information in two other recent papers on FUELGEN. Moreover, a sequel project is outlined.