918 resultados para eucalyptus fiber
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Transposable elements (TE) are major components of eukaryotic genomes and involved in cell regulation and organism evolution. We have analyzed 123,889 expressed sequence tags of the Eucalyptus Genome Project database and found 124 sequences representing 76 TE in 9 groups, of which copia, MuDR and FAR1 groups were the most abundant. The low amount of sequences of TE may reflect the high efficiency of repression of these elements, a process that is called TE silencing. Frequency of groups of TE in Eucalyptus libraries which were prepared with different tissues or physiologic conditions from seedlings or adult plants indicated that developing plants experience the expression of a much wider spectrum of TE groups than that seen in adult plants. These are preliminary results that identify the most relevant TE groups involved with Eucalyptus development, which is important for industrial wood production. Copyright by the Brazilian Society of Genetics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: Fiber-reinforced composite (FRC) posts can be air-abraded to obtain good attachment to the resin cement. This study tested the effect of silica coating on the flexural strength of carbon, opaque, and translucent quartz FRC posts. Materials and Methods: Six experimental groups of FRC posts (n = 10 per group) were tested, either as received from the manufacturer or after chairside silica coating (30-μm CoJet-Sand). Results: There was no significant difference in the flexural strength of nonconditioned (504 to 525 MPa) and silica-coated (514 to 565 MPa) specimens (P > .05) (analysis of variance). The type of post did have a significant effect on flexural strength (P < .05). Conclusion: Chairside silica coating did not affect the flexural strength of both carbon and quartz FRC posts.
Resumo:
Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).
Resumo:
Weight reduction and improved damage tolerance characteristics were the prime drivers to develop new family of materials for the aerospace/ aeronautical industry. Aiming this objective, a new lightweight Fiber/ Metal Laminate (FML) has been developed. The combination of metal and polymer composite laminates can create a synergistic effect on many properties. The mechanical properties of FML shows improvements over the properties of both aluminum alloys and composite materials individually. Due to their excellent properties, FML are being used as fuselage skin structures of the next generation commercial aircrafts. One of the advantages of FML when compared with conventional carbon fiber/epoxy composites is the low moisture absorption. The moisture absorption in FML composites is slower when compared with polymer composites, even under the relatively harsh conditions, due to the barrier of the aluminum outer layers. Due to this favorable atmosphere, recently big companies such as EMBRAER, Aerospatiale, Boing, Airbus, and so one, starting to work with this kind of materials as an alternative to save money and to guarantee the security of their aircrafts.
Resumo:
The genetic divergence in 20 Eucalyptus spp. clones was evaluated by multivariate techniques based on 167 RAPD markers, of which 155 were polymorphic and 12 monomorphic. The measures of genetic distances were obtained by the arithmetic complement of the coefficients of Jaccard and of Sorenso-Nei and Li and evaluated by the hierarchical methods of Single Linkage clustering and Unweighted Pair Group Method with Arithmetic Mean (UPGMA). Independent of the dissimilarity coefficient, the greatest divergence was found between clones 7 and 17 and the smallest between the clones 11 and 14. Clone clustering was little influenced by the applied procedure so that, adopting the same percentage of divergence, the UPGMA identified two groups less for the coefficient of Sorenso-Nei and Li. The clones evidenced considerable genetic divergence, which is partly associated to the origin of the study material. The clusters formed by the UPGMA clustering algorithm associated to the arithmetic complement of Jaccard were most consistent.
Resumo:
The leaf-cutting ant Atta sexdens rubropilosa Forel, 1908 is the most harmful of the Eucalyptus pests, causing severe losses in wood production through defoliation. Various strategies have been tried and effort spent on the development of methods to control this pest, however no practical and environmentally acceptable one currently exists. In this work the chemical composition of the essential oil of seven Eucalyptus species was identified and the selectivity and sensitivity of antennal receptors of A. sexdens rubropilosa workers to the volatile compounds were determined using the electroantennographic technique (EAG and GC-EAD). Analysis by GC-EAD showed in E. cloesiana and E. maculata, respectively, seventeen and sixteen terpenes that elicited responses in ant workers' antennae, indicating the potential role of the essential oils as allelochemicals that determine the choice of the foraging material. © 2006 Verlag der Zeitschrift für Naturforschung.
Resumo:
The present study had as its objective the assessment of the possible effects of hydric stress on the growth, physiological characteristics of two different genetic materials from Eucalyptus urograndis. The experiment was carried out in a greenhouse at Faculdade de Ciências Agronômicas of UNESP, campus Botucatu from March to July, 2005. The hydric management was established based on the soil water potential. Two water levels were established, doing the evapotranspired water replacement by pot weighing. Two clones were used, Eucalyptus urograndis 105 and 433, being the first one more resistant to the hydric deficit and the 433 more sensitive to stress. The study was made from a 2×2 factorial (two levels of water × two genetic materials). For the hydric management, the plants were irrigated when they reached a soil water potential of -0.03 MPa or -1.5 MPa. The assessments made were: diffusive water vapor of stomato, transpiration, leaf temperature and leaf water potential. The physiological evaluations throughout the day, in the end of the experiment. Treatments without hydric stress had a higher performance in all studied characteristics, but the clones had no influence. The stomatic resistance followed the potentials, showing higher values in the treatments submitted to hydric deficiency, more intensely for clone 433, being that this also happened with the leaf water potential. The transpiration also followed the leaf water potential and the stomatic resistance more intensely for clone 105 both comparing stressed plants and non-stressed plants. Consequently, the leaf temperatures had higher values for clone 433 on the stressed treatment. Thus, it can be concluded that there was a better performance in plants kept on a soil water potential of -0.03 MPa and a higher resistance to hydric stress for clone 105.
Resumo:
This study aimed to evaluate the influence of cement thickness on the bond strength of a fiber-reinforced composite (FRC) post system to the root dentin. Eighteen single-rooted human teeth were decoronated (length: 16 mm), the canals were prepared, and the specimens were randomly allocated to 2 groups (n = 9): group 1 (low cement thickness), in which size 3 FRC posts were cemented using adhesive plus resin cement; and group 2 (high cement thickness), in which size 1 FRC posts were cemented as in group 1. Specimens were sectioned, producing 5 samples (thickness: 1.5 mm). For cement thickness evaluation, photographs of the samples were taken using an optical microscope, and the images were analyzed. Each sample was tested in push-out, and data were statistically analyzed. Bond strengths of groups 1 and 2 did not show significant differences (P = .558), but the cement thicknesses for these groups were significantly different (P < .0001). The increase in cement thickness did not significantly affect the bond strength (r2 = 0.1389, P = .936). Increased cement thickness surrounding the FRC post did not impair the bond strength.
Resumo:
This study evaluated the Eucalyptus grandis drying defects acting on boards diametrical position and on log steaming. Half of the logs, with diameter from 20 to <25, 25 to <30 and 30 to <35cm, were steamed during 20 hours at 90°C of temperature. Subsequently, the logs (control and steamed) were sawn. The boards were dried in the dry-kiln pilot and the resulting defects from the drying process were measured. The results indicate that: (1) the boards coming from control logs presented different magnitude defects in function of the diametrical position. The split and spring to increase in direction to pith, the bow to increase in direction to bark and cupping were bigger in intermediary boards; (2) the boards coming from steamed logs presented a reduction from drying defects in function of logs diameter and its more homogeneous index in the pith-bark direction.
Resumo:
The goal of this research was to determine the density distribution in medium density fiberboard (MDF), manufactured with polyurethane derived from castor oil using, ultrasonic wave technique. The equipment used in this test is Steinkamp BP7 with plan and exponential transducers, both with 45 kHz frequencies, located in several zones on the plate in order to determine wave ultrasonic velocity. The Pinus caribaea and Eucalyptus grandis fiberboard were manufactured in the quality control and products development laboratory of Duratex with 500 mm long, 500 mm large, 8 and 15 mm of thickness. Three MDF for each fiber specimen and thickness were fabricated, totalizing twelve plates tested. The MDF were produced with 5% polyurethane addition, in temperature of 160°C, tension press of 53 bars and addition of moisture content of 12%. For determination of fiberboard density, samples were extracted from the same zones where the wave ultrasonic velocity was determined. In this case, DAX-Ray equipment was used. Statistical analysis shows good agreement with wave ultrasonic velocity and the density profile, validating the application of non-destructive technique in order to determine the density profile of MDF's.
Resumo:
Biopulping is a technology which application can be advantageous to mechanical or chemical pulping. It presents benefits such as the creation of stronger pulp, as well as energy or chemicals savings. This paper gives an overview of the recent efforts to develop biopulping processes in Brazil as well as provides critical information on biopulping development worldwide. Eucalyptus grandis wood chips have been biotreated by Ceriporiopsis subvermispora in a 50-ton biopulping pilot-plant and used to produce TMP and CTMP pulps on a mill scale, Up to 18% and 27% energy savings have been observed for producing 450-470 CSFreeness TMP and CTMP pulps. Despite darker bio-TMP pulps are produced, one-stage bleaching with 5% H2O2 was sufficient to improve brightness values to 70% and 72% for bio-TMP and control pulps, respectively. Understanding biopulping mechanisms is also relevant because more resistant and competitive fungal species could be selected with basis on a function-directed screen-ing project. As far as the chemical changes induced by the fungus in wood are concerned, recent efforts have pointed out for two different types of wood transformations. One of them involves intense lignin depolymerization in short biotreatment periods, while the other indicates that esterification reactions of oxalate secreted by the Jungas on the polysaccharides chains increase the water saturation point of the fibers. Both transformations are expected to affect the fiber-fiber bonding and, consequently, the physical resistance of wood.