937 resultados para ethanol reforming
Resumo:
From the Finnish Art Society to the Ateneum: Fredrik Cygnaeus, Carl Gustaf Estlander and the Roles of the Art Collection My dissertation deals with the Finnish Art Society and the development of its collection in the evolving field of the visual arts from the foundation of the society in 1846 to its exhibition in the Ateneum, a palace of art that was opened to the public in Helsinki in 1888. The main questions that it addresses are why and how the collection came into being, what its purpose was and what kind of future prospects were projected for it in the rapidly evolving field of the visual arts. I have examined the subject of my study from the perspectives of institutional history, the organisation of the field of art and the history of art collections. The prisms through which I have viewed the subject are the history of museums in Europe, the written history of art, the art association movement and the organisation of art education in relation to an ideology of enlightenment. Thus the activities of the Finnish Art Society are here mirrored for the first time in a wider context and the history of its collection located on the map of European collections. My research shows that the history of the collection of the Finnish Art Society initially depended on certain players in the visual arts and their particular leanings. The most important of these custodians were two long-serving chairmen of the society, Fredrik Cygnaeus (1807 1881) and Carl Gustaf Estlander (1834 1910). When the foundations for art activities had been laid through the establishment of the society, Cygnaeus and Estlander began to plan how the field of art might be moulded so as to improve the level of training for artists and to improve the quality of the collections and the opportunities for their display. Cygnaeus campaigned for the establishment of the Finnish Fine Arts Academy, while Estlander saw opportunities to combine the visual and applied arts. The findings of my research bring new information about the history of the collection of the Finnish Art Society, its profile, the professional abilities of those who were mainly responsible for developing it and the relationship between it and plans for reforming art education. The major findings are connected with the position of the collection in the field of art at different stages of its development. Despite the central monopoly of the Finnish Art Society in the field of art, the position of the collection was closely bound up with leading players in the field of art and their personal interests. This subservience also created an impediment to its full-blown enhancement and purposeful profiling, and it remained evident for a long time when the collection was seeking its own place in the Finnish art world.
Resumo:
Reliability of supply of feed grain has become a high priority issue for industry in the northern region. Expansion by major intensive livestock and industrial users of grain, combined with high inter-annual variability in seasonal conditions, has generated concern in the industry about reliability of supply. This paper reports on a modelling study undertaken to analyse the reliability of supply of feed grain in the northern region. Feed grain demand was calculated for major industries (cattle feedlots, pigs, poultry, dairy) based on their current size and rate of grain usage. Current demand was estimated to be 2.8Mt. With the development of new industrial users (ethanol) and by projecting the current growth rate of the various intensive livestock industries, it was estimated that demand would grow to 3.6Mt in three years time. Feed grain supply was estimated using shire scale yield prediction models for wheat and sorghum that had been calibrated against recent ABS production data. Other crops that contribute to a lesser extent to the total feed grain pool (barley, maize) were included by considering their production relative to the major winter and summer grains, with estimates based on available production records. This modelling approach allowed simulation of a 101-year time series of yield that showed the extent of the impact of inter-annual climate variability on yield levels. Production estimates were developed from this yield time series by including planted crop area. Area planted data were obtained from ABS and ABARE records. Total production amounts were adjusted to allow for any export and end uses that were not feed grain (flour, malt etc). The median feed grain supply for an average area planted was about 3.1Mt, but this varied greatly from year to year depending on seasonal conditions and area planted. These estimates indicated that supply would not meet current demand in about 30% of years if a median area crop were planted. Two thirds of the years with a supply shortfall were El Nino years. This proportion of years was halved (i.e. 15%) if the area planted increased to that associated with the best 10% of years. Should demand grow as projected in this study, there would be few years where it could be met if a median crop area was planted. With area planted similar to the best 10% of years, there would still be a shortfall in nearly 50% of all years (and 80% of El Nino years). The implications of these results on supply/demand and risk management and investment in research and development are briefly discussed.
Resumo:
The requirement of a suitable energy source during the induced synthesis of nitrate reductase in Image was investigated. The levels of nitrate reductase induced were shown to be energy-dependent, and to vary in response to the type of carbon source provided. Glycerol, fructose, ethanol, glucose, and sucrose served as efficient energy sources. Growth rate of the yeast and the induced level of nitrate reductase were dependent on the ratio of carbon to nitrogen in the induction medium, and ratio of 2 being optimal. Induction of nitrate reductase was inhibited by uncouplers, 2,4-dinitrophenol (DNP), dicumarol and carbonyl cyanide Candida-Utilis -trifluoromethoxy phenyl hydrazone (CCCP), and by cyanide and azide, indicating an absolute energy-dependency. The facilitation of induction of a high level of nitrate reductase by exogenously added ATP as sole source of energy confirmed the obligate requirement of ATP for the synthesis of nitrate reductase in Candida-Utilis.
Resumo:
Hybrids between Corymbia torelliana (F.Muell.) K.D.Hill & L.A.S.Johnson and C. citriodora subsp. variegata (F.Muell.) A.R.Bean & M.W.McDonald are used extensively to establish forestry plantations in subtropical Australia. Methods were developed for in vitro seed germination, shoot multiplication and plantlet formation that could be used to establish in vitro and ex vitro clone banks of juvenile Corymbia hybrids. Effects of sodium hypochlorite concentration and exposure time on seed contamination and germination, and effects of cytokinin and auxin concentrations on shoot multiplication and subsequent rooting, were assessed. A two-step surface sterilisation procedure, involving 70% ethanol followed by 1% sodium hypochlorite, provided almost no contamination and at least 88% germination. A novel method of cytokinin-free node culture proved most effective for in vitro propagation. Lateral bud break of primary shoots was difficult to induce by using cytokinin, but primary shoots rooted prolifically, elongated rapidly and produced multiple nodes in the absence of exogenous cytokinin. Further multiplication was obtained either by elongating lateral shoots of nodal explants in cytokinin-free medium or by inducing organogenic callus and axillary shoot proliferation with 2.2 µm benzyladenine. Plantlets were produced using an in vitro soil-less method that provided extensive rooting in sterile propagation mixture. These methods provide a means for simultaneous laboratory storage and field-testing of clones before selection and multiplication of desired genotypes.
Resumo:
This study is based on the multidiciplinary approach of using natural colorants as textile dyes. The author was interested in both the historical and traditional aspects of natural dyeing as well as the modern industrial applications of the pure natural compounds. In the study, the anthraquinone compounds were isolated as aglycones from the ectomycorrhizal fungus Dermocybe sanguinea. The endogenous beta-glucosidase of the fungus was used to catalyse the hydrolysis of the O-glycosyl linkage in emodin- and dermocybin-1-beta-D-glucopyranosides. The method, in which 10.45 kg of fresh fungi was starting material, yielded two fractions: 56.0 g of Fraction 1 (94% of the total amount of pigment,) consisting almost exclusively of the main pigments emodin and dermocybin, and 3.3 g of Fraction 2 (6%) consisting mainly of the anthraquinone carboxylic acids. The anthraquinone compounds in Fractions 1 and 2 were separated by one- and two-dimensional thin-layer-chromatography (TLC) using silica plates. 1D TLC showed that neither an acidic nor a basic solvent system alone separated completely all the anthraquinones isolated from D. sanguinea, in spite of the variation of the rations of the solvent components in the systems. Thus, a new 2D TLC technique was developed, applying n-pentanol-pyridine-methanol (6:4:3, v/v/v) and toluene-ethyl acetate-ethanol-formic acid (10:8:1:2, v/v/v/v) as eluents. Fifteen different anthraquinone derivatives were completely separated from one another. Emodin, physcion, endocrocin, dermolutein, dermorubin, 5-chlorodermorubin, emodin-1-beta-D-glucopyranoside, dermocybin-1-beta-D-glucopyranoside and dermocybin, and five new compounds, not earlier identified in D. sanguinea, 7-chloroemodin, 5,7-dichloroemodin, 5,7-dichloroendocrocin, 4-hydroxyaustrocorticone and austrocorticone, were separated and identified on the basis of their Rf-values, UV/Vis spectra and mass spectra. One substance remained unidentified, because of its very low concentration. The anthraquinones in Fractions 1 and 2 were preparatively separeted by liquid-liquid partition, with isopropylmethyl ketone and aqueous phosphate buffer as the solvent system. Advantage was taken of the principle of stepwise pH-gradient elution. The multiple liquid-liquid partition (MLLP) offered an excellent method for the preparative separation of compounds, which contain acidic groups such as the phenolic OH and COOH groups. Due to their strong aggregation properties, these compounds are, without derivatization, very difficult to separate on a preparative scale by chromatographic methods. By the MLLP method remarkable separations were achieved for the components in each mixture. Emodin and dermocybin were both obtained from Fraction 1 in a purity of at least 99%. Pure emodin and dermocybin were applied as mordant dyes to wool and polyamide and as disperse dyes to polyester and polyamide, using the high temperature (HT) technique. A mixture of dermorubin and 5-chlorodermorubin was applied as an acid dye to wool. In these experiments, synthetic dyes were used as references. Experiments were also performed using water extract of the air-dried fungi as dye liquor for wool and silk. The main colouring compounds in the crude water extract were emodin and dermocybin, which indicated that the O-glycosyl linkages in emodin- and dermocybin-1-beta-D-glucopyranosides were broken by the beta-glucosidase enzyme. Apparently, the hydrolysis occurred during the drying of the fungi and during the soaking of the dried fruit bodies overnight when preparing the dyebath. The colour of each dyed material was investigated in terms of the CIELAB L*, a* and b* values, and the colour fastness to light, washing and rubbing was tested according to the ISO standards. In the mordant dyeing experiments, emodin dyed wool and polyamide yellow and red, depending on the pH of the dyebath. Dermocybin gave purple and violet colours. The colour fastness of the mordant-dyed fabrics varied from good to moderate. The fastness properties of the natural anthraquinone carboxylic acids on wool were good, indicating the strength of the ionic bonds between the COO- groups of the dyes and the NH3+ groups of the fibres. In the disperse dyeing experiments, emodin dyed polyester bright yellow and dermocybin bright reddish-orange, and the fabrics showed excellent colour fastness. In contrast, emodin and dermocybin successfully dyed polyamide brownish-orange and wine-red, respectively, but with only moderate fastness. In industrial dyeing processes, natural anthraquinone aglycone mixtures dyed wool and silk well even at low concentrations of mordants, i.e. with 10% of the weight of the fibre (owf) of KAl(SO4)2 and 1 or 0.5% owf of other mordants. This study showed that purified natural anthraquinone compounds can produce bright hues with good colour-fastness properties in different textile materials. Natural anthraquinones have a significant potential for new dyeing techniques and will provide useful alternatives to synthetic dyes.
Resumo:
Sugarcane is a major global agricultural crop that produces significant quantities of sugar and biomass in tropical and sub-tropical regions. Over many centuries, the crop has been grown primarily for its high sugar content which traditionally contributes over 95% of the revenue derived from the crop. While the production of renewable electricity from bagasse and rum from molasses has a long history, in more recent decades significant advances have been made in the production of cogeneration products and fuel ethanol at large scale. Sugarcane biorefineries producing fuels, green chemicals, biopolymers and bio-products offer great potential for improving the profitability of sugarcane production. This paper will address the opportunities available for sugarcane biorefineries to contribute to future profitability and sustainability of the sugarcane industry.
Resumo:
Biorefineries, producing fuels, green chemicals and bio-products, offer great potential for improving the profitability and sustainability of tropical agricultural industries. Biomass from tropical crops like sugarcane, sweet sorghum, palm and cassava offer great potential because of the high biomass growth potential under favourable climatic conditions. Biorefineries aim to convert waste residues through biochemical and enzymatic processes to low cost fermentable sugars which are a platform for value-adding. Through subsequent fermentation utilising microbial biotechnologies or chemical synthesis, the sugars can be converted to fuels including ethanol and butanol, oils, organic acids such as lactic and levulinic acid and polymer precursors. Other biorefinery products can include food and animal feeds, plastics, fibre products and resins. Pretreatment technologies are a key to unlocking this potential and new technologies are emerging. This paper will address the opportunities available for tropical biorefineries to contribute to the future profitability of tropical agricultural industries. The importance of pretreatment technologies will be discussed.
Resumo:
Biorefineries, co-producing fuels, green chemicals and bio-products, offer great potential for enhancing agricultural value, and developing new industries in the bioeconomy. Biomass biorefineries aim to convert agricultural crops and wastes through biochemical and enzymatic processes to low cost fermentable sugars and other products which are platforms for value-adding. Through subsequent fermentation or chemical synthesis, the bio-based platforms can be converted to fuels including ethanol and butanol, oils, organic acids such as lactic and levulinic acid and polymer precursors. Other biorefinery products can include food and animal feeds, plastics, fibre products and resins. In 2014, QUT commissioned a study from Deloitte Access Economics and Correlli Consulting to assess the potential future economic value of tropical biorefineries to Queensland. This paper will report on the outcomes of this study and address the opportunities available for tropical biorefineries to contribute to the future profitability and sustainability of tropical agricultural industries in Queensland and more broadly across northern Australia.
Resumo:
A one-step thermal extrusion process has been investigated for the modification of starch with alcohol in order to improve the film properties. Unmodified starch/glycerol mixtures containing Methanol (MetOH), ethanol (EtOH) and their combinations (5, 10 and 15 wt%) were thermally extruded to produce thermoplastic. The final hot-pressed film showed increased stiffness and crystallinity, while having decreased moisture uptake due to oxidation and alcohol complexing molecular interactions. The Young’s Modulus, tensile strength and elongation at break increased by 60%, 15% and 32% respectively, for 5 wt% MetOH derived film, compared to the control. The film moisture content was reduced by up to 15 wt% for 5 wt% EtOH-derived film. Generally the crystallinity increased in the alcohol-derived films due to an increased complexing of alcohol with starch forming the VH polymorph. Fourier transform infra-red (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopic analysis were used to discuss the molecular interactions between the starch and alcohol molecules.
Resumo:
Nickel zinc hydroxysalt–Pt metal nanoparticle composite was prepared by intercalation of the anionic platinum complex, [PtCl6]2− in nickel zinc hydroxysalt through ion exchange reaction and subsequent reduction of the platinum complex by ethanol. Powder X-ray diffraction and microscopy studies indicate that the process of reduction of the platinum complex in the interlayer region of the anionic clay takes place topotactically without destroying the layers.
Resumo:
Alcoholic liver disease (ALD) is a well recognized and growing health problem worldwide. ALD advances from fatty liver to inflammation, necrosis, fibrosis and cirrhosis. There is accumulating evidence that the innate immune system is involved in alcoholic liver injury. Within the innate and acquired immune systems, the complement system participates in inflammatory reactions and in the elimination of invading foreign, as well as endogenous apoptotic or injured cells. The present study aimed at evaluating the role of the complement system in the development of alcoholic liver injury. First, in order to study the effects of chronic ethanol intake on the complement system, the deposition of complement components in liver and the expression of liver genes associated with complement in animals with alcohol-induced liver injury were examined. It was demonstrated that chronic alcohol exposure leads to hepatic deposition of the complement components C1, C3, C8 and C9 in the livers of rats. Liver gene expression analysis showed that ethanol up-regulated the expression of transcripts for complement factors B, C1qA, C2, C3 and clusterin. In contrast, ethanol down-regulated the expression of the complement regulators factor H, C4bp and factor D and the terminal complement components C6, C8α and C9. Secondly, the role of the terminal complement pathway in the development of ALD was evaluated by using rats genetically deficient in the complement component C6 (C6-/-). It was found that chronic ethanol feeding induced more liver pathology (steatosis and inflammatory changes) in C6-/- rats than in wild type rats. The hepatic triacylglyceride content and plasma alanine aminotransferase activity increased in C6-/- rats, supporting the histopathological findings and elevation of the plasma pro-/anti-inflammatory TNF-/IL-10 ratio was also more marked in C6-/- rats. Third, the role of the alternative pathway in the development of alcoholic liver steatosis was characterized by using C3-/- mice. In C3-/- mice ethanol feeding tended to reduce steatosis and had no further effect on liver triacylglyceride, liver/body weight ratio nor on liver malondialdehyde level and serum alanine aminotransferase activity. In C3-/- mice alcohol-induced liver steatosis was reduced also after an acute alcohol challenge. In both wild type and C3-/- mice ethanol markedly reduced serum cholesterol and ApoA-I levels, phospholipid transfer protein activity and hepatic mRNA levels of fatty acid binding proteins and fatty acid -oxidation enzymes. In contrast, exclusively in C3-/- mice, ethanol treatment increased serum and liver adiponectin levels but down-regulated the expression of transcripts of lipogenic enzymes, adiponectin receptor 2 and adipose differentiation-related protein and up-regulated phospholipase D1. In conclusion, this study has demonstrated that the complement system is involved in the development of alcohol-induced liver injury. Chronic alcohol exposure causes local complement activation and induction of mRNA expression of classical and alternative pathway components in the liver. In contrast expression of the terminal pathway components and soluble regulators were decreased. A deficient terminal complement pathway predisposes to alcoholic liver damage and promotes a pro-inflammatory cytokine response. Complement component C3 contributes to the development of alcohol-induced fatty liver and its consequences by affecting regulatory and specific transcription factors of lipid homeostasis.
Resumo:
Ultraviolet and x-ray photoelectron spectroscopy have been employed to investigate the adsorption of methanol, ethanol, diethylether, acetaldehyde, acetone, methyl acetate and methylamine on surfaces of Fe, Ni and Cu. All these molecules adsorb molecularly at low temperatures (≤100 K). Lone pair orbitals of these molecules are stabilized on these metal surfaces (by 0·4–1·0eV) due to molecular chemisorption. The molecules generally undergo transformations as the temperature is raised to 120 K or above. The new species produced seems to depend on the metal surface. Some of the product species identified are methoxy species, formaldehyde and carbon monoxide in the case of methanol and methyl acetate, ethoxy species in the case of ethanol and 2-propanol in the case of acetone.
Resumo:
Trichinella nematodes are the causative agent of trichinellosis, a meat-borne zoonosis acquired by consuming undercooked, infected meat. Although most human infections are sourced from the domestic environment, the majority of Trichinella parasites circulate in the natural environment in carnivorous and scavenging wildlife. Surveillance using reliable and accurate diagnostic tools to detect Trichinella parasites in wildlife hosts is necessary to evaluate the prevalence and risk of transmission from wildlife to humans. Real-time PCR assays have previously been developed for the detection of European Trichinella species in commercial pork and wild fox muscle samples. We have expanded on the use of real-time PCR in Trichinella detection by developing an improved extraction method and SYBR green assay that detects all known Trichinella species in muscle samples from a greater variety of wildlife. We simulated low-level Trichinella infections in wild pig, fox, saltwater crocodile, wild cat and a native Australian marsupial using Trichinella pseudospiralis or Trichinella papuae ethanol-fixed larvae. Trichinella-specific primers targeted a conserved region of the small subunit of the ribosomal RNA and were tested for specificity against host and other parasite genomic DNAs. The analytical sensitivity of the assay was at least 100 fg using pure genomic T. pseudospiralis DNA serially diluted in water. The diagnostic sensitivity of the assay was evaluated by spiking log of each host muscle with T. pseudospiralis or T. papuae larvae at representative infections of 1.0, 0.5 and 0.1 larvae per gram, and shown to detect larvae at the lowest infection rate. A field sample evaluation on naturally infected muscle samples of wild pigs and Tasmanian devils showed complete agreement with the EU reference artificial digestion method (k-value = 1.00). Positive amplification of mouse tissue experimentally infected with T. spiralis indicated the assay could also be used on encapsulated species in situ. This real-time PCR assay offers an alternative highly specific and sensitive diagnostic method for use in Trichinella wildlife surveillance and could be adapted to wildlife hosts of any region. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We tested, in an olfactometer, whether or not Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) responds preferentially to the volatiles that emanate from the fungi associated with cotton [Gossypium hirsutum L. (Malvaceae)] seed over those that emanate from cereals, because cereals are usually portrayed as the primary resources of these beetles. Pairwise comparisons were conducted between cotton seed, wheat (Triticum aestivum L.), and sorghum [Sorghum bicolor (L.) Moench] (both Poaceae); volatiles were tested from intact seeds and from both water and ethanol extracts. The results demonstrate that T. castaneum is attracted more strongly to cotton seeds with its lint contaminated with fungi, than to the conventional resources of this species (i.e., wheat and sorghum). Further tests prove that it is the fungus on the lint that produces the active volatiles, because the beetles did not respond to sterilized cotton lint (i.e., without the fungi typically associated with it when cotton seed is stored). Tests with five fungal cultures (each representing an unidentified species that was isolated from the field-collected cotton lint) were variable across the cultures, with only one of them being significantly attractive to the beetles. The others were not attractive and one may even have repulsed the beetles. The results are consistent with the beetles having a strong ecological association with fungi and suggest it would be worth investigating the ecology of T. castaneum from this perspective. © 2012 The Netherlands Entomological Society.
Resumo:
Alcohol addiction is a debilitating disorder producing maladaptive changes in the brain, leading drinkers to become more sensitive to stress and anxiety. These changes are key factors contributing to alcohol craving and maintaining a persistent vulnerability to relapse. Serotonin (5-Hydroxytryptamine, 5-HT) is a monoamine neurotransmitter widely expressed in the central nervous system where it plays an important role in the regulation of mood. The serotonin system has been extensively implicated in the regulation of stress and anxiety, as well as the reinforcing properties of all of the major classes of drugs of abuse, including alcohol. Dysregulation within the 5-HT system has been postulated to underlie the negative mood states associated with alcohol use disorders. This review will describe the serotonergic (5-HTergic) neuroplastic changes observed in animal models throughout the alcohol addiction cycle, from prenatal to adulthood exposure. The first section will focus on alcohol-induced 5-HTergic neuroadaptations in offspring prenatally exposed to alcohol and the consequences on the regulation of stress/anxiety. The second section will compare alterations in 5-HT signalling induced by acute or chronic alcohol exposure during adulthood and following alcohol withdrawal, highlighting the impact on the regulation of stress/anxiety signalling pathways. The third section will outline 5-HTergic neuroadaptations observed in various genetically-selected ethanol preferring rat lines. Finally, we will discuss the pharmacological manipulation of the 5-HTergic system on ethanol- and anxiety/stress-related behaviours demonstrated by clinical trials, with an emphasis on current and potential treatments.