916 resultados para enzyme polymorphism
Resumo:
Heme oxygenase-1 (HO-1) has a microsatellite polymorphism based on the number of guanosine-thymidine nucleotide repeats (GT) repeats that regulates expression levels and could have an impact on organ survival post-injury. We correlated HO-1 polymorphism with renal graft function. The HO-1 gene was sequenced (N = 181), and the allelic repeats were divided into subclasses: short repeats (S) (< 27 repeats) and long repeats (L) (>= 27 repeats). A total of 47.5% of the donors carried the S allele. The allograft function was statistically improved six months, two and three yr after transplantation in patients receiving kidneys from donors with an S allele. For the recipients carrying the S allele (50.3%), the allograft function was also better throughout the follow-up, but reached statistical significance only three yr after transplantation (p = 0.04). Considering only those patients who had chronic allograft nephropathy (CAN; 74 of 181), allograft function was also better in donors and in recipients carrying the S allele, two and three yr after transplantation (p = 0.03). Recipients of kidney transplantation from donors carrying the S allele presented better function even in the presence of CAN.
Resumo:
Inflammatory cytokines such as interieukin-1 beta (IL-1 beta) are involved in the pathogenesis of periodontal diseases. A high individual variation in the levels of IL-10 mRNA has been verified, which is possibly determined by genetic polymorphisms and/or by the presence of periodontopathogens such as Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Aggregatibacter actinomycetemcomitans. In this study, we investigated the role of an IL-10 promoter single-nucleotide polymorphism at position 3954 [IL-1 beta(3954) SNP] and the presence of the periodontopathogens in the determination of the IL-1 beta levels in the periodontal tissues of nonsmoking chronic periodontitis (CP) patients (n = 117) and control (C) subjects in = 175) and the possible correlations with the clinical parameters of the disease. IL-1 beta(3954) SNP was investigated by restriction fragment length polymorphism, while the IL-1 beta levels and the presence of the periodontopathogens were determined by real-time PCR. Similar frequencies of IL-1 beta(3954) SNP were found in the C and CP groups, in spite of a trend toward a higher incidence of T alleles in the CP group. The IL-1 beta (3954) SNP CT and TT genotypes, as well as P. gingivalis, T. forsythia, and T. denticola, were associated with higher IL-1 beta levels and with higher values of the clinical parameters of disease severity. Concomitant analyses demonstrate that IL-1 beta(3954) and the red complex periodontopathogens were found to independently and additively modulate the levels of IL-1 beta in periodontal tissues. Similarly, the concurrent presence of both factors was associated with increased scores of disease severity. IL-1 beta(3954) genotypes and red complex periodontopathogens, individually and additively, modulate the levels of IL-1 beta in the diseased tissues of nonsmoking CP patients and, consequently, are potentially involved in the determination of the disease outcome.
Resumo:
Background and Objective: Inflammatory cytokines such as tumor necrosis factor-alpha are involved in the pathogenesis of periodontal diseases. A high between-subject variation in the level of tumor necrosis factor-alpha mRNA has been verified, which may be a result of genetic polymorphisms and/or the presence of periodontopathogens such as Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola (called the red complex) and Aggregatibacter actinomycetemcomitans. In this study, we investigated the effect of the tumor necrosis factor-alpha (TNFA) -308G/A gene polymorphism and of periodontopathogens on the tumor necrosis factor-alpha levels in the periodontal tissues of nonsmoking patients with chronic periodontitis (n = 127) and in control subjects (n = 177). Material and Methods: The TNFA-308G/A single nucleotide polymorphism was investigated using polymerase chain reaction-restriction fragment length polymorphism analysis, whereas the tumor necrosis factor-alpha levels and the periodontopathogen load were determined using real-time polymerase chain reaction. Results: No statistically significant differences were found in the frequency of the TNFA-308 single nucleotide polymorphism in control and chronic periodontitis groups, in spite of the higher frequency of the A allele in the chronic periodontitis group. The concomitant analyses of genotypes and periodontopathogens demonstrated that TNFA-308 GA/AA genotypes and the red-complex periodontopathogens were independently associated with increased levels of tumor necrosis factor-alpha in periodontal tissues, and no additive effect was seen when both factors were present. P. gingivalis, T. forsythia and T. denticola counts were positively correlated with the level of tumor necrosis factor-alpha. TNFA-308 genotypes were not associated with the periodontopathogen detection odds or with the bacterial load. Conclusion: Our results demonstrate that the TNFA-308 A allele and red-complex periodontopathogens are independently associated with increased levels of tumor necrosis factor-alpha in diseased tissues of nonsmoking chronic periodontitis patients and consequently are potentially involved in determining the disease outcome.
Resumo:
OBJECTIVES To identify the aetiological agents of cutaneous leishmaniasis and to investigate the genetic polymorphism of Leishmania (Viannia) parasites circulating in an area with endemic cutaneous leishmaniasis (CL) in the Atlantic rainforest region of northeastern Brazil. METHODS Leishmania spp. isolates came from three sources: (i) patients diagnosed clinically and parasitologically with CL based on primary lesions, secondary lesions, clinical recidiva, mucocutaneous leishmaniasis and scars; (ii) sentinel hamsters, sylvatic or synanthropic small rodents; and (iii) the sand fly species Lutzomyia whitmani. Isolates were characterised using monoclonal antibodies, multilocus enzyme electrophoresis (MLEE) and polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region rDNA locus. RESULTS Seventy-seven isolates were obtained and characterised. All isolates were identified as Leishmania (Viannia) braziliensis serodeme 1 based on reactivity to monoclonal antibodies. MLEE identified 10 zymodemes circulating in the study region. Most isolates were classified as zymodemes closely related to L. (V.) braziliensis, but five isolates were classified as Leishmania (Viannia) shawi. All but three of the identified zymodemes have so far been observed only in the study region. Enzootic transmission and multiclonal infection were observed. CONCLUSIONS Our results confirm that transmission cycle complexity and the co-existence of two or more species in the same area can affect the level of genetic polymorphism in a natural Leishmania population. Although it is not possible to make inferences as to the modes of genetic exchange, one can speculate that some of the zymodemes specific to the region are hybrids of L. (V.) braziliensis and L. (V.) shawi.
Resumo:
We characterized sequences from genes encoding cathepsin L-like (CatL-like) cysteine proteases from African and South American isolates of Trypanosoma vivax and T. vivax-like organisms, and evaluated their suitability as genetic markers for population structure analysis and diagnosis. Phylogenetic analysis of sequences corresponding to CatL-like catalytic domains revealed substantial polymorphism, and clades of sequences (TviCatL1-9) were separated by large genetic distances. TviCatL1-4 sequences were from cattle isolates from West Africa (Nigeria and Burkina Faso) and South America (Brazil and Venezuela), which belonged to the same T. vivax genotype. T. vivax-like genotypes from East Africa showed divergent sequences, including TviCatL5-7 for isolates from Mozambique and TviCatL8-9 for an isolate from Kenya. Phylogenetic analysis of CatL-like gene data supported the relationships among trypanosome species reflected in the phylogenies based on the analysis of small subunit (SSU) of ribosomal RNA gene sequence data. The discovery of different CatL-like sequences for each genotype, defined previously by ribosomal DNA data, indicate that these sequences provide useful targets for epidemiological and population genetic studies. Regions in CatL-like sequences shared by all T. vivax genotypes but not by other trypanosomes allowed the establishment of a specific and sensitive diagnostic PCR for epidemiological studies in South America and Africa. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The polymorphisms of endothelial nitric oxide synthase (eNOS) are associated with reduced eNOS activity. Aerobic exercise training (AEX) may influence resting nitric oxide (NO) production, oxidative stress and blood pressure. The purpose of this study was to investigate the effect of AEX on the relationship among blood pressure, eNOS gene polymorphism and oxidative stress in pre-hypertensive older people. 118 pre-hypertensive subjects (59 +/- A 6 years) had blood samples collected after a 12 h overnight fast for assessing plasma NO metabolites (NOx) assays, thiobarbituric acid reactive substances (T-BARS) and superoxide dismutase activity (ecSOD). eNOS polymorphism (T-786C and G-894T) was done by standard PCR methods. All people were divided according to the genotype results (G1: TT/GG, G2: TT/GT + TT, G3: TC + CC/GG, G4: TC + CC/GT + TT). All parameters were measured before and after 6 months of AEX (70% of VO(2 max)). At baseline, no difference was found in systolic and diastolic blood pressure, ecSOD and T-BARS activity. Plasma NOx levels were significantly different between G1 (19 +/- A 1 mu M) and G4 (14.2 +/- A 0.6 mu M) and between G2 (20.1 +/- A 1.7 mu M) and G4 (14.2 +/- A 0.6 mu M). Therefore, reduced NOx concentration in G4 group occurred only when the polymorphisms were associated, suggesting that these results are more related to genetic factors than NO-scavenging effect. After AEX, the G4 increased NOx values (17.2 +/- A 1.2 mu M) and decreased blood pressure. G1, G3 and G4 decreased T-BARS levels. These results suggest the AEX can modulate the NOx concentration, eNOS activity and the relationship among eNOS gene polymorphism, oxidative stress and blood pressure especially in C (T-786C) and T (G-894T) allele carriers.
Resumo:
Large pore ordered mesoporous silica FDU-1 with three-dimensional (3D) face-centered cubic, Fm3m arrangement of rnesopores, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)), tetraethyl orthosilicate (TEOS) and trimethyl-benzene (TMB). Large pore FDU-1 silica was obtained by using the following gel composition 1TEOS:0.00735B50-6600:0.00735TMB:6HCl:155H(2)O. The pristine material exhibited a BET specific surface area of 684 m(2) g(-1), total pore volume of 0.89 cm(3) g(-1), external surface area of 49 m(2) g(-1) and microporous volume of 0.09 cm(3) g(-1). The enzyme activity was determined by the Flow Injection Analysis-Chemiluminescence (FIA-CL) method. For GOD immobilized on the FDU-1 silica, GOD supernatant and GOD solution, the FIA-CL results were 9.0, 18.6 and 34.0 U, respectively. The value obtained for the activity of the GOD solution with FIA-CL method is in agreement with the 35 U, obtained by spectrophotometry. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A novel strategy for enhanced field-effect biosensing using capacitive electrolyte-insulator-semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si-SiO(2) EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 mu M and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10-12%). (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The successful immobilization of enzymes such as horseradish peroxidase (HRP) in solid films is essential for applications in sensors and for fundamental studies aimed at identifying possible biotechnological devices. In this study we show that HRP can be immobilized in alternated layers with chitosan as the template material. The activity of HRP in HRP/chitosan films was preserved for several weeks, and could be detected optically upon monitoring the reaction with pyrogallol. The morphology of the film displayed stripes that disappeared after reaction with pyrogallol. Though the activity in the HRP/chitosan film was lower than in a homogeneous solution or in an LB film investigated earlier, the response was linear for a considerable period of time, which may be advantageous for sensing hydrogen peroxide. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We show a simple strategy to obtain all efficient enzymatic broelectrochemical device, in which urease was immobilized oil electroactive nanostructured membranes (ENMs) made with polyaniline and silver nanoparticles (AgNP) stabilized in polyvinyl alcohol (PAni/PVA-AgNP). Fabrication of the modified electrodes comprised the chemical deposition of polyaniline followed by drop-coating of PVA-AgNP and urease, resulting in a final ITO/PAni/PVA-AgNP/urease electrode Configuration. For comparison. the electrochemical performance of ITO/PAni/urease electrodes (without Ag nanoparticles) was also studied. The performance of the modified electrodes toward Urea hydrolysis was investigated via amperometric measurements, revealing a fast increase in cathodic current with a well-defined peak upon addition of urea to the electrolytic solution. The cathodic currents for the ITO/PAni/PVA-AgNP urease electrodes were significantly higher than for the ITO/PAni/urease electrodes. The friendly environment provided by the ITO/PAni/PVA-AgNP electrode to the immobilized enzyme promoted efficient catalytic conversion of urea into ammonium and bicarbonate tons. Using the Michaelis-Menten kinetics equation, a K(M)(aPP) of 2.7 mmol L(-1) was obtained. indicating that the electrode architecture employed may be advantageous for fabrication of enzymatic devices with improved biocatalytic properties. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Electroactive nanostructured membranes have been produced by the layer-by-layer (LbL) technique, and used to make electrochemical enzyme biosensors for glucose by modification with cobalt hexacyanoferrate redox mediator and immobilisation of glucose oxidase enzyme. Indium tin oxide (ITO) glass electrodes were modified with up to three bilayers of polyamidoamine (PAMAM) dendrimers containing gold nanoparticles and poly(vinylsulfonate) (PVS). The gold nanoparticles were covered with cobalt hexacyanoferrate that functioned as a redox mediator, allowing the modified electrode to be used to detect H(2)O(2), the product of the oxidase enzymatic reaction, at 0.0 V vs. SCE. Enzyme was then immobilised by cross-linking with glutaraldehyde. Several parameters for optimisation of the glucose biosensor were investigated, including the number of deposited bilayers, the enzyme immobilisation protocol and the concentrations of immobilised enzyme and of the protein that was crosslinked with PAMAM. The latter was used to provide glucose oxidase with a friendly environment, in order to preserve its bioactivity. The optimised biosensor, with three bilayers, has high sensitivity and operational stability, with a detection limit of 6.1 mu M and an apparent Michaelis-Menten constant of 0.20 mM. It showed good selectivity against interferents and is suitable for glucose measurements in natural samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A major challenge for producing low cost biosensors based on nanostructured films with control of molecular architectures is to preserve the catalytic activity of the immobilized biomolecules. In this study, we show that catalase (HRP) keeps its activity if immobilized in Langmuir-Blodgett (LB) films of dipalmitoyl phosphatidylglycerol (DPPG). The incorporation of catalase into a DPPG monolayer at the at interface was demonstrated with surface pressure and surface potential isotherms, in addition to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). According to the PM-IRRAS data. catalase was not denatured upon adsorption on a preformed DPPG monolayer and could be transferred onto a solid substrate. The catalytic activity of catalase in a mixed LB film with DPPG was ca. 13% higher than in solution. The control of molecular architecture and choice of a suitable phospholipid matrix allows catalase-containing LB films to be used in sensing hydrogen peroxide.
Resumo:
Chlortalidone (HIGROTON) is a diuretic drug widely used in antihypertensive therapy. Thus far, only two solid-state polymorphs of chlortalidone have been reported. We elucidated the structure of chlortalidone form I and a new polymorph. This new phase, namely, chlortalidone form III, was also entirely characterized. It was possible to conclude that it is a conformer with a different orientation of the chlorobenzenesulfonamide moiety. Compared to form I, it has a rotation of about 90 degrees on the axis of the C-C bond bridging the substituted phenyl and isoindolinyl rings. This conformational feature is related to the crystal packing patterns of the chlortalidone forms. Furthermore, certain intermolecular hydrogen bonds are present in both polymorphs, giving rise to ribbons with chlortalidone enantiomers alternately placed into them. The chlortalidone form I and form III crystallize in the triclinic space group P (1) over bar as racemic mixtures. Additional conformational details also differentiate the chlortalidone conformers. Slight twists on the isoindolinyl and sulfamyl groups exist. Considering all structural relationships, the fingerprint plots derived from the Hirshfeld surfaces exhibited the characteristics of the chlortalidone form I and form III crystal structures.
Resumo:
Subtype F wild type HIV protease has been kinetically characterized using six commercial inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) commonly used for HIV/AIDS treatment, as well as inhibitor TL-3 and acetylpepstatin. We also obtained kinetic parameters for two multi-resistant proteases (one of subtype B and one of subtype F) harboring primary and secondary mutations selected by intensive treatment with ritonavir/nelfinavir. This newly obtained biochemical data shows that all six studied commercially available protease inhibitors are significantly less effective against subtype F HIV proteases than against HIV proteases of subtype B, as judged by increased K(i) and biochemical fitness (vitality) values. Comparison with previously reported kinetic values for subtype A and C HIV proteases show that subtype F wild type proteases are significantly less susceptible to inhibition. These results demonstrate that the accumulation of natural polymorphisms in subtype F proteases yields catalytically more active enzymes with a large degree of cross-resistance, which thus results in strong virus viability.
Resumo:
Background and purpose: The discovery of the pharmacological functions of nitric oxide has led to the development of NO donor compounds as therapeutic agents. A new generation of ruthenium NO donors, cis-[Ru(NO)(bpy)(2)L]X(n) , has been developed, and our aim was to show that these complexes are able to lyse Trypanosoma cruzi in vitro and in vivo. Experimental approach: NO donors were incubated with T. cruzi and their anti-T. cruzi activities evaluated as the percentage of lysed parasites compared to the negative control. In vivo, trypanocidal activity was evaluated by observing the levels of parasitaemia, survival rate and elimination of amastigotes in mouse myocardial tissue. The inhibition of GAPDH was monitored by the biochemical reduction of NAD+ to NADH. Key results: The NO donors cis-[Ru(NO)(bpy)(2)L]X(n) presented inhibitory effects on T. cruzi GAPDH (IC(50) ranging from 89 to 153 mu M). The crystal structure of the enzyme shows that the inhibitory mechanism is compatible with S-nitrosylation of the active cysteine (cys166) site. Compounds cis-[Ru(NO)(bpy)(2)imN](PF(6))(3) and cis-[Ru(NO)(bpy)(2)SO(3)]PF(6), at a dose of 385 nmol center dot kg-1, yielded survival rates of 80 and 60%, respectively, in infected mice, and eradicated any amastigotes from their myocardial tissue. Conclusions and implications: The ruthenium compounds exhibited potent in vitro and in vivo trypanocidal activities at doses up to 1000-fold lower than the clinical dose for benznidazole. Furthermore, one mechanism of action of these compounds is via the S-nitrosylation of Cys166 of T. cruzi GAPDH. Thus, these compounds show huge potential as candidates for the development of new drugs for the treatment of Chagas`s disease. This article is commented on by Machado et al., pp. 258-259 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00662.x and to view a related paper in this issue by Guedes et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00576.x.