933 resultados para enzyme extraction
Resumo:
This work evaluated the effect of pressure and temperature on yield and characteristic flavour intensity of Brazilian cherry (Eugenia uniflora L) extracts obtained by supercritical CO(2) using response surface analysis, which is a simple and efficient method for first inquiries. A complete central composite 2(2) factorial experimental design was applied using temperature (ranging from 40 to 60 degrees C) and pressure (from 150 to 250 bar) as independent variables. A second order model proved to be predictive (p <= 0.05) for the extract yield as affected by pressure and temperature, with better results being achieved at the central point (200 bar and 50 degrees C). For the flavour intensity, a first order model proved to be predictive (p <= 0.05) showing the influence of temperature. Greater characteristic flavour intensity in extracts was obtained for relatively high temperature (> 50 degrees C), Therefore, as far as Brazilian cherry is concerned, optimum conditions for achieving higher extract yield do not necessarily coincide to those for obtaining richer flavour intensity. Industrial relevance: Supercritical fluid extraction (SFE) is an emerging clean technology through which one may obtain extracts free from organic solvents. Extract yields from natural products for applications in food, pharmaceutical and cosmetic industries have been widely disseminated in the literature. Accordingly, two lines of research have industrial relevance, namely, (i) operational optimization studies for high SFE yields and (ii) investigation on important properties extracts are expected to present (so as to define their prospective industrial application). Specifically, this work studied the optimization of SFE process to obtain extracts from a tropical fruit showing high intensity of its characteristic flavour, aiming at promoting its application in natural aroma enrichment of processed foods. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The present paper reports phase equilibrium experimental data for two systems composed by peanut oil or avocado seed oil + commercial oleic acid + ethanol + water at 298.2 K and different water contents in the solvent. The addition of water to the solvent reduces the loss of neutral oil in the alcoholic phase and improves the solvent selectivity. The experimental data were correlated by the NRTL and UNIQUAC models. The global deviations between calculated and experimental values were 0.63 % and 1.08 %, respectively, for the systems containing avocado seed oil. In the case of systems containing peanut oil those deviations were 0.65 % and 0.98 %, respectively. Such results indicate that both models were able to reproduce correctly the experimental data, although the NRTL model presented a better performance.
Resumo:
Supercritical carbon dioxide (SC-CO(2)) extraction was employed to extract carotenoids from the freeze-dried pulp of pitanga fruits (Eugenia uniflora L.), an exotic fruit, rich in carotenoids and still little explored commercially. The SC-CO(2) extraction was carried out at two temperatures, 40 and 60 degrees C, and seven pressures, 100, 150, 200, 250, 300, 350 and 400 bar. The carotenoids were determined by high-performance liquid chromatography connected to photodiode array and mass spectrometry detectors. Lycopene, rubixanthin and P-cryptoxanthin were the main carotenoids present in the freeze-dried pitanga pulp, whereas beta-cryptoxanthin concentration was negligible in the SC-CO(2) extracts, for all the investigated state conditions. The maximum recovery of carotenoids was obtained at 60 degrees C and 250 bar, extracting 55% of the total carotenoid content, 74% of the rubixanthin and 78% of the lycopene from the pulp. Under these state conditions, the total carotenoid concentration in the extract was 5474 mu g/g, represented by 66% lycopene and 32% rubixanthin. The experimental state conditions produced different SC-CO(2) extracts with respect to the extraction yield and concentration of different carotenoids, indicating that the supercritical carbon dioxide was selective in the extraction of the pitanga carotenoids as a function of temperature and pressure. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The main goal of this work was to evaluate thermodynamic parameters of the soybean oil extraction process using ethanol as solvent. The experimental treatments were as follows: aqueous solvents with water contents varying from 0 to 13% (mass basis) and extraction temperature varying from 50 to 100 degrees C. The distribution coefficients of oil at equilibrium have been used to calculate enthalpy, entropy and free energy changes. The results indicate that oil extraction process with ethanol is feasible and spontaneous, mainly under higher temperature. Also, the influence of water level in the solvent and temperature were analysed using the response surface methodology (RSM). It can be noted that the extraction yield was highly affected by both independent variables. A joint analysis of thermodynamic and RSM indicates the optimal level of solvent hydration and temperature to perform the extraction process.
Resumo:
In Leishmania, arginase is responsible for the production of ornithine, a precursor of polyamines required for proliferation of the parasite. In this work, the activation kinetics of immobilized arginase enzyme from L. (L.) amazonensis were studied by varying the concentration of Mn(2+) applied to the nickel column at 23 degrees C. The intensity of the binding of the enzyme to the Ni(2+) resin was directly proportional to the concentration of Mn(2+). Conformational changes of the enzyme may occur when the enzyme interacts with immobilized Ni(2+), allowing the following to occur: (1) entrance of Mn(2+) and formation of the metal bridge; (2) stabilization and activation of the enzyme at 23 degrees C; and (3) an increase in the affinity of the enzyme to Ni(2+) after the Mn(2+) activation step. The conformational alterations can be summarized as follows: the interaction with the Ni(2+) simulates thermal heating in the artificial activation by opening a channel for Mn(2+) to enter. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Arginase (L-arginine amidinohydrolase, E.C. 3.5.3.1) is a metalloenzyme that catalyses the hydrolysis Of L-arginine to L-ornithine and urea. In Leishmania spp., the biological role of the enzyme may be involved in modulating NO production upon macrophage infection. Previously, we cloned and characterized the arginase gene from Leishmania (Leishmania) amazonensis. In the present work, we successfully expressed the recombinant enzyme in E. coli and performed biochemical and biophysical characterization of both the native and recombinant enzymes. We obtained K-M and V-max. values of 23.9(+/- 0.96) mM and 192.3 mu mol/min mg protein (+/- 14.3), respectively, for the native enzyme. For the recombinant counterpart, K-M was 21.5(+/- 0.90) mM and V-max was 144.9(+/- 8.9) mu mol/min mg. Antibody against the recombinant protein confirmed a glycosomal cellular localization of the enzyme in promastigotes. Data from light scattering and small angle X-ray scattering showed that a trimeric state is the active form of the protein. We determined empirically that a manganese wash at room temperature is the best condition to purify active enzyme. The interaction of the recombinant protein with the immobilized nickel also allowed us to confirm the structural disposition of histidine at positions 3 and 324. The determined structural parameters provide substantial data to facilitate the search for selective inhibitors of parasitic sources of arginase, which could subsequently point to a candidate for leishmaniasis therapy. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Bradykinin-potentiating peptides (BPPs) or proline-rich oligopeptides (PROs) isolated from the venom glands of Bothrops jararaca (Bj) were the first natural inhibitors of the angiotensin-converting enzyme (ACE) described. Bj-PRO-5a (< EKWAP), a member of this structurally related peptide family, was essential for the development of captopril, the first site-directed ACE inhibitor used for the treatment of human hypertension. Nowadays, more Bj-PROs have been identified with higher ACE inhibition potency compared to Bj-PRO-5a. However, despite its modest inhibitory effect of ACE inhibition, Bj-PRO-5a reveals strong bradykinin-potentiating activity, suggesting the participation of other mechanisms for this peptide. In the present study, we have shown that Bj-PRO-5a induced nitric oxide (NO) production depended on muscarinic acetylcholine receptor M1 subtype (mAchR-M1) and bradykinin B(2) receptor activation, as measured by a chemiluminescence assay using a NO analyzer. Intravital microscopy based on transillumination of mice cremaster muscle also showed that both bradykinin B(2) receptor and mAchR-M1 contributed to the vasodilatation induced by Bj-PRO-5a. Moreover, Bj-PRO-5a-mediated vasodilatation was completely blocked in the presence of a NO synthase inhibitor. The importance of this work lies in the definition of novel targets for Bj-PRO-5a in addition to ACE, the structural model for captopril development. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Data obtained during routine diagnosis of human T-cell lymphotropic virus type 1 (HTLV-1) and 2 (HTLV-2) in ""at-risk"" individuals from Sao Paulo, Brazil using signal-to-cutoff (S/C) values obtained by first, second, and third generation enzyme immunoassay (EIA) kits, were compared. The highest S/C values were obtained with third generation EIA kits, but no correlation was detected between these values and specific antibody reactivity to HTLV-1, HTLV-2, or untyped HTLV (p = 0.302). In addition, use of these third generation kits resulted in HTLV-1/2 false-positive samples. In contrast, first and second generation EIA kits showed high specificity, and the second generation EIA kits showed the highest efficiency, despite lower S/C values. Using first and second generation EIA kits, significant differences in specific antibody detection of HTLV-1, relative to HTLV-2 (p = 0.019 for first generation and p < 0.001 for second generation EIA kits) and relative to untyped HTLV (p = 0.025 for first generation EIA kits), were observed. These results were explained by the composition and format of the assays. In addition, using receiver operating characteristics (ROC) analysis, a slight adjustment in cutoff values for third generation EIA kits improved their specificities and should be used when HTLV ""at-risk"" populations from this geographic area are to be evaluated. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Due to idiosyncrasies in their syntax, semantics or frequency, Multiword Expressions (MWEs) have received special attention from the NLP community, as the methods and techniques developed for the treatment of simplex words are not necessarily suitable for them. This is certainly the case for the automatic acquisition of MWEs from corpora. A lot of effort has been directed to the task of automatically identifying them, with considerable success. In this paper, we propose an approach for the identification of MWEs in a multilingual context, as a by-product of a word alignment process, that not only deals with the identification of possible MWE candidates, but also associates some multiword expressions with semantics. The results obtained indicate the feasibility and low costs in terms of tools and resources demanded by this approach, which could, for example, facilitate and speed up lexicographic work.
Resumo:
Visual representations of isosurfaces are ubiquitous in the scientific and engineering literature. In this paper, we present techniques to assess the behavior of isosurface extraction codes. Where applicable, these techniques allow us to distinguish whether anomalies in isosurface features can be attributed to the underlying physical process or to artifacts from the extraction process. Such scientific scrutiny is at the heart of verifiable visualization - subjecting visualization algorithms to the same verification process that is used in other components of the scientific pipeline. More concretely, we derive formulas for the expected order of accuracy (or convergence rate) of several isosurface features, and compare them to experimentally observed results in the selected codes. This technique is practical: in two cases, it exposed actual problems in implementations. We provide the reader with the range of responses they can expect to encounter with isosurface techniques, both under ""normal operating conditions"" and also under adverse conditions. Armed with this information - the results of the verification process - practitioners can judiciously select the isosurface extraction technique appropriate for their problem of interest, and have confidence in its behavior.
Resumo:
Large pore ordered mesoporous silica FDU-1 with three-dimensional (3D) face-centered cubic, Fm3m arrangement of rnesopores, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)), tetraethyl orthosilicate (TEOS) and trimethyl-benzene (TMB). Large pore FDU-1 silica was obtained by using the following gel composition 1TEOS:0.00735B50-6600:0.00735TMB:6HCl:155H(2)O. The pristine material exhibited a BET specific surface area of 684 m(2) g(-1), total pore volume of 0.89 cm(3) g(-1), external surface area of 49 m(2) g(-1) and microporous volume of 0.09 cm(3) g(-1). The enzyme activity was determined by the Flow Injection Analysis-Chemiluminescence (FIA-CL) method. For GOD immobilized on the FDU-1 silica, GOD supernatant and GOD solution, the FIA-CL results were 9.0, 18.6 and 34.0 U, respectively. The value obtained for the activity of the GOD solution with FIA-CL method is in agreement with the 35 U, obtained by spectrophotometry. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A novel strategy for enhanced field-effect biosensing using capacitive electrolyte-insulator-semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si-SiO(2) EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 mu M and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10-12%). (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The successful immobilization of enzymes such as horseradish peroxidase (HRP) in solid films is essential for applications in sensors and for fundamental studies aimed at identifying possible biotechnological devices. In this study we show that HRP can be immobilized in alternated layers with chitosan as the template material. The activity of HRP in HRP/chitosan films was preserved for several weeks, and could be detected optically upon monitoring the reaction with pyrogallol. The morphology of the film displayed stripes that disappeared after reaction with pyrogallol. Though the activity in the HRP/chitosan film was lower than in a homogeneous solution or in an LB film investigated earlier, the response was linear for a considerable period of time, which may be advantageous for sensing hydrogen peroxide. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We show a simple strategy to obtain all efficient enzymatic broelectrochemical device, in which urease was immobilized oil electroactive nanostructured membranes (ENMs) made with polyaniline and silver nanoparticles (AgNP) stabilized in polyvinyl alcohol (PAni/PVA-AgNP). Fabrication of the modified electrodes comprised the chemical deposition of polyaniline followed by drop-coating of PVA-AgNP and urease, resulting in a final ITO/PAni/PVA-AgNP/urease electrode Configuration. For comparison. the electrochemical performance of ITO/PAni/urease electrodes (without Ag nanoparticles) was also studied. The performance of the modified electrodes toward Urea hydrolysis was investigated via amperometric measurements, revealing a fast increase in cathodic current with a well-defined peak upon addition of urea to the electrolytic solution. The cathodic currents for the ITO/PAni/PVA-AgNP urease electrodes were significantly higher than for the ITO/PAni/urease electrodes. The friendly environment provided by the ITO/PAni/PVA-AgNP electrode to the immobilized enzyme promoted efficient catalytic conversion of urea into ammonium and bicarbonate tons. Using the Michaelis-Menten kinetics equation, a K(M)(aPP) of 2.7 mmol L(-1) was obtained. indicating that the electrode architecture employed may be advantageous for fabrication of enzymatic devices with improved biocatalytic properties. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Electroactive nanostructured membranes have been produced by the layer-by-layer (LbL) technique, and used to make electrochemical enzyme biosensors for glucose by modification with cobalt hexacyanoferrate redox mediator and immobilisation of glucose oxidase enzyme. Indium tin oxide (ITO) glass electrodes were modified with up to three bilayers of polyamidoamine (PAMAM) dendrimers containing gold nanoparticles and poly(vinylsulfonate) (PVS). The gold nanoparticles were covered with cobalt hexacyanoferrate that functioned as a redox mediator, allowing the modified electrode to be used to detect H(2)O(2), the product of the oxidase enzymatic reaction, at 0.0 V vs. SCE. Enzyme was then immobilised by cross-linking with glutaraldehyde. Several parameters for optimisation of the glucose biosensor were investigated, including the number of deposited bilayers, the enzyme immobilisation protocol and the concentrations of immobilised enzyme and of the protein that was crosslinked with PAMAM. The latter was used to provide glucose oxidase with a friendly environment, in order to preserve its bioactivity. The optimised biosensor, with three bilayers, has high sensitivity and operational stability, with a detection limit of 6.1 mu M and an apparent Michaelis-Menten constant of 0.20 mM. It showed good selectivity against interferents and is suitable for glucose measurements in natural samples. (C) 2008 Elsevier B.V. All rights reserved.