929 resultados para endophytic fungi
Resumo:
Existing chemical treatments to prevent biological damage to monuments often involve considerable amounts of potentially dangerous and even poisonous biocides. The scientific approach described in this paper aims at a drastic reduction in the concentration of biocide applications by a polyphasic approach of biocides combined with cell permeabilisers, polysaccharide and pigment inhibitors and a photodynamic treatment. A variety of potential agents were screened to determine the most effective combination. Promising compounds were tested under laboratory conditions with cultures of rock deteriorating bacteria, algae, cyanobacteria and fungi. A subsequent field trial involved two sandstone types with natural biofilms. These were treated with multiple combinations of chemicals and exposed to three different climatic conditions. Although treatments proved successful in the laboratory, field trials were inconclusive and further testing will be required to determine the most effective treatment regime. While the most effective combination of chemicals and their application methodology is still being optimised, results to date indicate that this is a promising and effective treatment for the control of a wide variety of potentially damaging organisms colonising stone substrates
Resumo:
The rock/atmosphere interface is inhabited by a complex microbial community including bacteria, algae and fungi. These communities are prominent biodeterioration agents and remarkably influence the status of stone monuments and buildings. Deeper comprehension of natural biodeterioration processes on stone surfaces has brought about a concept of complex microbial communities referred to as "subaerial biofilms". The practical implications of biofilm formation are that control strategies must be devised both for testing the susceptibility of the organisms within the biofilm and treating the established biofilm. Model multi-species biofilms associated with mineral surfaces that are frequently refractory to conventional treatment have been used as test targets. A combination of scanning microscopy with image analysis was applied along with traditional cultivation methods and fluorescent activity stains. Such a polyphasic approach allowed a comprehensive quantitative evaluation of the biofilm status and development. Effective treatment strategies incorporating chemical and physical agents have been demonstrated to prevent biofilm growth in vitro. Model biofilm growth on inorganic support was significantly reduced by a combination of PDT and biocides
Resumo:
Inflammatory bowel disease (IBD) is characterised by an inappropriate chronic immune response against resident gut microbes. This may be on account of distinct changes in the gut microbiota termed as dysbiosis. The role of fungi in this altered luminal environment has been scarcely reported. We studied the fungal microbiome in de-novo paediatric IBD patients utilising next generation sequencing and compared with adult disease and normal controls. We report a distinct difference in fungal species with Ascomycota predominating in control subjects compared to Basidiomycota dominance in children with IBD, which could be as a result of altered tolerance in these patients.
Resumo:
Whereas osmotic stress response induced by solutes has been well-characterized in fungi, less is known about the other activities of environmentally ubiquitous substances. The latest methodologies to define, identify and quantify chaotropicity, i.e. substance-induced destabilization of macromolecular systems, now enable new insights into microbial stress biology (Cray et al. in Curr Opin Biotechnol 33:228–259, 2015a, doi:10.1016/j.copbio.2015.02.010; Ball and Hallsworth in Phys Chem Chem Phys 17:8297–8305, 2015, doi:10.1039/C4CP04564E; Cray et al. in Environ Microbiol 15:287–296, 2013a, doi:10.1111/1462-2920.12018). We used Aspergillus wentii, a paradigm for extreme solute-tolerant fungal xerophiles, alongside yeast cell and enzyme models (Saccharomyces cerevisiae and glucose-6-phosphate dehydrogenase) and an agar-gelation assay, to determine growth-rate inhibition, intracellular compatible solutes, cell turgor, inhibition of enzyme activity, substrate water activity, and stressor chaotropicity for 12 chemically diverse solutes. These stressors were found to be: (i) osmotically active (and typically macromolecule-stabilizing kosmotropes), including NaCl and sorbitol; (ii) weakly to moderately chaotropic and non-osmotic, these were ethanol, urea, ethylene glycol; (iii) highly chaotropic and osmotically active, i.e. NH4NO3, MgCl2, guanidine hydrochloride, and CaCl2; or (iv) inhibitory due primarily to low water activity, i.e. glycerol. At ≤0.974 water activity, Aspergillus cultured on osmotically active stressors accumulated low-M r polyols to ≥100 mg g dry weight−1. Lower-M r polyols (i.e. glycerol, erythritol and arabitol) were shown to be more effective for osmotic adjustment; for higher-M r polyols such as mannitol, and the disaccharide trehalose, water-activity values for saturated solutions are too high to be effective; i.e. 0.978 and 0.970 (25 ºC). The highly chaotropic, osmotically active substances exhibited a stressful level of chaotropicity at physiologically relevant concentrations (20.0–85.7 kJ kg−1). We hypothesized that the kosmotropicity of compatible solutes can neutralize chaotropicity, and tested this via in-vitro agar-gelation assays for the model chaotropes urea, NH4NO3, phenol and MgCl2. Of the kosmotropic compatible solutes, the most-effective protectants were trimethylamine oxide and betaine; but proline, dimethyl sulfoxide, sorbitol, and trehalose were also effective, depending on the chaotrope. Glycerol, by contrast (a chaotropic compatible solute used as a negative control) was relatively ineffective. The kosmotropic activity of compatible solutes is discussed as one mechanism by which these substances can mitigate the activities of chaotropic stressors in vivo. Collectively, these data demonstrate that some substances concomitantly induce chaotropicity-mediated and osmotic stresses, and that compatible solutes ultimately define the biotic window for fungal growth and metabolism. The findings have implications for the validity of ecophysiological classifications such as ‘halophile’ and ‘polyextremophile’; potential contamination of life-support systems used for space exploration; and control of mycotoxigenic fungi in the food-supply chain.
Resumo:
There is currently an urgent need to increase global food security, reverse the trends of increasing cancer rates, protect environmental health, and mitigate climate change. Toward these ends, it is imperative to improve soil health and crop productivity, reduce food spoilage, reduce pesticide usage by increasing the use of biological control, optimize bioremediation of polluted sites, and generate energy from sustainable sources such as biofuels. This review focuses on fungi that can help provide solutions to such problems. We discuss key aspects of fungal stress biology in the context of the papers published in this Special Issue of Current Genetics. This area of biology has relevance to pure and applied research on fungal (and indeed other) systems, including biological control of insect pests, roles of saprotrophic fungi in agriculture and forestry, mycotoxin contamination of the food-supply chain, optimization of microbial fermentations including those used for bioethanol production, plant pathology, the limits of life on Earth, and astrobiology.
Resumo:
Fungi play central roles in many biological processes, influencing soil fertility, decomposition, cycling of minerals, and organic matter, plant health, and nutrition. They produce a wide spectrum of molecules, which are exploited in a range of industrial processes to manufacture foods, food preservatives, flavoring agents, and other useful biological products. Fungi can also be used as biological control agents of microbial pathogens, nematodes or insect pests, and affect plant growth, stress tolerance, and nutrient acquisition. Successful exploitation of fungi requires better understanding of the mechanisms that fungi use to cope with stress as well as the way in which they mediate stress tolerance in other organisms. It is against this backdrop that a scientific meeting on fungal stress was held in São José dos Campos, Brazil, in October 2014. The meeting, hosted by Drauzio E. N. Rangel and Alene E. Alder-Rangel, and supported by the São Paulo Research Foundation (FAPESP), brought together more than 30 young, mid-career, and highly accomplished scientists from ten different countries. Here we summarize the highlights of the meeting.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are an important class of persistent organic pollutants (POPs) in the environment and accumulate in forest soils. These soils are often dominated by ectomycorrhizal (EcM) roots, but little is known about how EcM fungi degrade PAHs, or the overall effect of field colonized EcM roots on the fate of PAHs. The ability of eight EcM fungi to degrade PAHs in liquid culture spiked with 14C labelled PAHs was investigated. Microcosms were used to determine the impact of naturally colonized mycorrhizal pine seedlings on PAH mineralization and volatilization. Only two EcM fungi (Thelephora terrestris and Laccaria laccata) degraded at least one PAH and none were able to mineralize the PAHs in pure culture. Where degradation occurred, the compounds were only mono-oxygenated. EcM pine seedlings did not alter naphthalene mineralization or volatilization but retarded fluorene mineralization by 35% compared with unplanted, ectomycorrhizosphere soil inoculated, microcosms. The EcM fungi possessed limited PAH degrading abilities, which may explain why EcM dominated microcosms retarded fluorene mineralization. This observation is considered in relation to the 'Gadgil-effect', where retarded litter decomposition has been observed in the presence of EcM roots. © New Phytologist (2004).
Resumo:
The potential of ectomycorrhizal (ECM) associations to facilitate clean-up of soil contaminated with persistent organic pollutants (POPs) is considered. Most ECM fungi screened for degradation of POPs (e.g. polyhalogenated biphenyls, polyaromatic hydrocarbons, chlorinated phenols, and pesticides) are able to transform these compounds. Mineralization of toluene, tetrachloroethylene and 2,4-dichlorophenol in intact ECM-association rhizospheres has also been demonstrated. We review and consider the likely mechanisms by which ECM fungi can transform pollutants, the extent to which these capabilities may be utilized practically in bioremediation, along with the potential advantages and disadvantages of using ECM associations in bioremediation. (C) 2000 Elsevier Science Ltd.
Resumo:
Pinus sylvestris seedlings infected with either the ectomycorrhizal (ECM) fungus Paxillus involutus or Suillus variegatus were exposed to a range of Cd or Zn concentrations. This was done to investigate the relationship between the sensitivity of ECM fungi and their host plants over a wide range of concentrations. P involutus ameliorated the toxicity of Cd and Zn to P. sylvestris with respect to root length, despite significant inhibition of ECM infection levels by Cd (Cd EC50 [effective concentration which inhibits ECM infection by 50%] values were: P. involutus 3.7 μg g-1 Cd; S. variegatus 2.3 μg g-1 Cd). ECM infection by P. involutus also decreased Cd and Zn transport to the plant shoots at potentially toxic concentrations and also influenced the proportion of Zn transported to the roots and shoots, with a higher proportion retained in the roots of the seedlings. ECM infection did increase host biomass production, but this was not affected by the presence of Cd or Zn. Root and shoot biomass production by P. sylvestris, in both the presence and absence of ECM fungi, was unaffected by Cd and Zn at all concentrations tested.
Resumo:
Scots pine seedlings colonized by ectomycorrhizal (ECM) fungi from natural soil inoculum were exposed to a range of Cd or Zn concentrations to investigate the effects of metals on ECM fungi-Scots pine associations in a realistic soil environment. Experiments focused on the relationship between the sensitivity of ECM fungi and their host plants, the influence of metals on ECM community dynamics on Scots pine roots, and the effects of metal exposure on ECM colonization from soil-borne propagules. Ectomycorrhizal colonization was inhibited by Cd and Zn, with a decrease in the proportion of ECM-colonized root tips. Shoot and root biomass, total root length, and total root-tip density, however, were unaffected by Cd or Zn. A decrease in the diversity of ECM morphotypes also occurred, which could have a negative effect on tree vigor. Overall, colonization by ECM fungi was more sensitive than seedling growth to Cd and Zn, and this could have serious implications for successful tree establishment on metal-contaminated soils.
Resumo:
A total of 107 putative ericoid mycorrhizal endophytes were isolated from hair roots of Calluna vulgaris from two abandoned arsenic/copper mine sites and a natural heathland site in southwest England. The endophytes were initially grouped as 14 RFLP types, based on the results of ITS-RFLP analysis using the restriction endonucleases Hinf I, Rsa I and Hae III. ITS sequences were obtained for representative isolates from each RFLP type and compared phylogenetically with sequences for known ericoid mycorrhizal endophytes and selected ascomycetes. The majority of endophyte isolates (62-92%) from each site were identified as Hymenoscyphus ericae, but a number of other less common mycorrhizal RFLP types were also identified, all of which appear to have strong affinities with the order Leotiales. None of the less common RFLP types was isolated from C. vulgaris at more than one field site. Neighbour-joining analysis indicated similarities between the endophytes from C. vulgaris and mycorrhizal endophytes isolated from other Ericaceae and Epacridaceae hosts in North America and Australia.
Resumo:
The effects of Cd and Zn on cross-colonization by Paxillus involutus of Scots pine seedlings was examined by using pairs of ectomycorrhizal (ECM) and non-mycorrhizal (NM) seedlings grown in the same vessel. This was done to assess, first, the ability of P. involutus to colonize NM Scots pine seedlings by growth from colonized roots of other Scots pine seedlings in the presence of Cd or Zn, and, second whether ECM colonization of Scots pine by P. involutus provided a competitive advantage over NM seedlings. Ectomycorrhizal colonization of Scots pine was shown to be more sensitive than Scots pine itself to Cd and Zn, but prior colonization did provide a competitive advantage with respect to biomass production. This beneficial effect over NM seedlings was, however, equal in the control, Cd and Zn treatments, and was due simply to growth stimulation in the presence of ECM colonization. Cross-colonization from an ECM to a NM seedling was reduced but not prevented by Cd and Zn. Cd had a more negative effect on cross-colonization than on initial colonization of seedlings, whereas Zn had an equally inhibitory effect on both parameters. These results have important implications for plant establishment on metal-contaminated sites. If cross-colonization between plants is reduced by toxic metals, plant establishment on contaminated sites might be retarded.
Resumo:
The ability of four ectomycorrhizal basidiomycetes to biotransform 2,4,6-trinitrotoluene (TNT) in axenic culture was tested. All species were capable of TNT biotransformation to a greater or lesser extent. When biotransformation was expressed on a biomass basis 4 out of the 5 isolates tested were equally efficient at transforming TNT. The factors regulating TNT biotransformation were investigated in detail for one fungus, Suillus variegatus. When the fungus was grown under nitrogen limiting conditions the rate of biotransformation decreased relative to nitrogen sufficient conditions, but no decrease was observed under short term carbon starvation. Extracellular enzymes of S. variegatus could transform TNT, but transformation was greater in intact cells. The mycelial cell wall fraction did not degrade TNT. The TNT concentration that caused 50% reduction in biomass (EC50) for S. variegatus was within the range observed for other basidiomycete fungi being between 2-10 μg mL-1. The potential use of ectomycorrhizal basidiomycetes as in-situ bioremediation agents for TNT contaminated soils is discussed.
Resumo:
The presence of Mn-Fe nodules in the epipedons (surface horizons) of paleosols of presumed Upper Neogene age in the northwestern Venezuelan Andes have been interpreted as products of inorganic oxidation and reduction processes operating over the full range of glacial and interglacial cycles that affected paleosol morphogenesis. New microscopic/chemical data from combined SEM-EDS-FIB analyses of representative Mn-Fe nodules indicate microbes play an important role in Mn/Fe precipitation leading to their genesis in alpine Mollisols (Argiustolls). Although the prevailing new data are based mainly on fossil forms of filamentous bacteria and fungi and other biogenic pseudomorphs that may represent the former resident bacteria, the presence of extant microbes must await field experiments/collection, followed by a molecular microbiology approach to determine the biological drivers of metal precipitation. As in other terrestrial niche environments, microbes are seen here to play a role, perhaps a key one, in the morphogenesis of paleosols of importance in upper Neogene paleoenvironmental reconstruction.
Resumo:
There is a pressing need to understand and optimize biological control so as to avoid over-reliance on the synthetic chemical pesticides that can damage environmental and human health. This study focused on interactions between a novel biocontrol-strain, Bacillus sp. JC12GB43, and potato-pathogenic Phytophthora and Fusarium species. In assays carried out in vitro and on the potato tuber, the bacterium was capable of near-complete inhibition of pathogens. This Bacillus was sufficiently xerotolerant (water activity limit for growth = 0.928) to out-perform Phytophthora infestans (~0.960) and challenge Fusarium coeruleum (~0.847) and Fusarium sambucinum (~0.860) towards the lower limits of their growth windows. Under some conditions, however, strain JC12GB43 stimulated proliferation of the pathogens: for instance, Fusarium coeruleum growth-rate was increased under chaotropic conditions in vitro (132 mM urea) by >100% and on tubers (2-M glycerol) by up to 570%. Culture-based assays involving macromolecule-stabilizing (kosmotropic) compatible solutes provided proof-of-principle that the Bacillus may provide kosmotropic metabolites to the plant pathogen under conditions that destabilize macromolecular systems of the fungal cell. Whilst unprecedented, this finding is consistent with earlier reports that fungi can utilize metabolites derived from bacterial cells. Unless the antimicrobial activities of candidate biocontrol strains are assayed over a full range of field-relevant parameters, biocontrol agents may promote plant pathogen infections and thereby reduce crop yields. These findings indicate that biocontrol activity, therefore, ought to be regarded as a mode-of-behaviour (dependent on prevailing conditions) rather than an inherent property of a bacterial strain.