988 resultados para electric arc simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to define a new statistic, PVL, based on the relative distance between the likelihood associated with the simulation replications and the likelihood of the conceptual model. Our results coming from several simulation experiments of a clinical trial show that the PVL statistic range can be a good measure of stability to establish when a computational model verifies the underlying conceptual model. PVL improves also the analysis of simulation replications because only one statistic is associated with all the simulation replications. As well it presents several verification scenarios, obtained by altering the simulation model, that show the usefulness of PVL. Further simulation experiments suggest that a 0 to 20 % range may define adequate limits for the verification problem, if considered from the viewpoint of an equivalence test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Connectivity analysis on diffusion MRI data of the whole- brain suffers from distortions caused by the standard echo- planar imaging acquisition strategies. These images show characteristic geometrical deformations and signal destruction that are an important drawback limiting the success of tractography algorithms. Several retrospective correction techniques are readily available. In this work, we use a digital phantom designed for the evaluation of connectivity pipelines. We subject the phantom to a âeurooetheoretically correctâeuro and plausible deformation that resembles the artifact under investigation. We correct data back, with three standard methodologies (namely fieldmap-based, reversed encoding-based, and registration- based). Finally, we rank the methods based on their geometrical accuracy, the dropout compensation, and their impact on the resulting connectivity matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Virtual reality (VR) simulation is increasingly used in surgical disciplines. Since VR simulators measure multiple outcomes, standardized reporting is needed. Methods We present an algorithm for combining multiple VR outcomes into dimension summary measures, which are then integrated into a meaningful total score. We reanalyzed the data of two VR studies applying the algorithm. Results The proposed algorithm was successfully applied to both VR studies. Conclusions The algorithm contributes to standardized and transparent reporting in VR-related research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To analyze anatomical variations associated with celiac plexus complex by means of computed tomography simulation, assessing the risk for organ injury as the transcrural technique is utilized. Materials and Methods: One hundred eight transaxial computed tomography images of abdomen were analyzed. The aortic-vertebral, celiac trunk (CeT)-vertebral, CeT-aortic and celiac-aortic-vertebral topographical relationships were recorded. Two needle insertion pathways were drawn on each of the images, at right and left, 9 cm and 4.5 cm away from the midline. Transfixed vital organs and gender-related associations were recorded. Results: Aortic-vertebral - 45.37% at left and 54.62% in the middle; CeT-vertebral - T12, 36.11%; T12-L1, 32.4%; L1, 27.77%; T11-T12, 2.77%; CeT-aortic - 53.7% at left and 46.3% in the middle; celiac-aortic-vertebral - L-l, 22.22%; M-m, 23.15%; L-m, 31.48%; M-l, 23.15%. Neither correspondence on the right side nor significant gender-related associations were observed. Conclusion: Considering the wide range of abdominal anatomical variations and the characteristics of needle insertion pathways, celiac plexus block should not be standardized. Imaging should be performed prior to the procedure in order to reduce the risks for injuries or for negative outcomes to patients. Gender-related anatomical variations involved in celiac plexus block should be more deeply investigated, since few studies have addressed the subject.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data transmission between an electric motor and a frequency converter is required in variablespeed electric drives because of sensors installed at the motor. Sensor information can be used for various useful applications to improve the system reliability and its properties. Traditionally, the communication medium is implemented by an additional cabling. However, the costs of the traditional method may be an obstacle to the wider application of data transmission between a motor and a frequency converter. In any case, a power cable is always installed between a motor and a frequency converter for power supply, and hence it may be applied as a communication medium for sensor level data. This thesis considers power line communication (PLC) in inverter-fed motor power cables. The motor cable is studied as a communication channel in the frequency band of 100 kHz−30 MHz. The communication channel and noise characteristics are described. All the individual components included in a variable-speed electric drive are presented in detail. A channel model is developed, and it is verified by measurements. A theoretical channel information capacity analysis is carried out to estimate the opportunities of a communication medium. Suitable communication and forward error correction (FEC) methods are suggested. A general method to implement a broadband and Ethernet-based communication medium between a motor and a frequency converter is proposed. A coupling interface is also developed that allows to install the communication device safely to a three-phase inverter-fed motor power cable. Practical tests are carried out, and the results are analyzed. Possible applications for the proposed method are presented. A speed feedback motor control application is verified in detail by simulations and laboratory tests because of restrictions for the delay in the feedback loop caused by PLC. Other possible applications are discussed at a more general level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dreaming is a pure form of phenomenality, created by the brain untouched by external stimulation or behavioral activity, yet including a full range of phenomenal contents. Thus, it has been suggested that the dreaming brain could be used as a model system in a biological research program on consciousness (Revonsuo, 2006). In the present thesis, the philosophical view of biological realism is accepted, and thus, dreaming is considered as a natural biological phenomenon, explainable in naturalistic terms. The major theoretical contribution of the present thesis is that it explores dreaming from a multidisciplinary perspective, integrating information from various fields of science, such as dream research, consciousness research, evolutionary psychology, and cognitive neuroscience. Further, it places dreaming into a multilevel framework, and investigates the constitutive, etiological, and contextual explanations for dreaming. Currently, the only theory offering a full multilevel explanation for dreaming, that is, a theory including constitutive, etiological, and contextual level explanations, is the Threat Simulation Theory (TST) (Revonsuo, 2000a; 2000b). The empirical significance of the present thesis lies in the tests conducted to test this specific theory put forth to explain the form, content, and biological function of dreaming. The first step in the empirical testing of the TST was to define exact criteria for what is a ‘threatening event’ in dreams, and then to develop a detailed and reliable content analysis scale with which it is possible to empirically explore and quantify threatening events in dreams. The second step was to seek answers to the following questions derived from the TST: How frequent threatening events are in dreams? What kind of qualities these events have? How threatening events in dreams relate to the most recently encoded or the most salient memory traces of threatening events experienced in waking life? What are the effects of exposure to severe waking life threat on dreams? The results reveal that threatening events are relatively frequent in dreams, and that the simulated threats are realistic. The most common threats include aggression, are targeted mainly against the dream self, and include simulations of relevant and appropriate defensive actions. Further, real threat experiences activate the threat simulation system in a unique manner, and dream content is modulated by the activation of long term episodic memory traces with highest negative saliency. To sum up, most of the predictions of the TST tested in this thesis received considerable support. The TST presents a strong argument that explains the specific design of dreams as threat simulations. The TST also offers a plausible explanation for why dreaming would have been selected for: because dreaming interacted with the environment in such a way that enhanced fitness of ancestral humans. By referring to a single threat simulation mechanism it furthermore manages to explain a wide variety of dream content data that already exists in the literature, and to predict the overall statistical patterns of threat content in different samples of dreams. The TST and the empirical tests conducted to test the theory are a prime example of what a multidisciplinary approach to mental phenomena can accomplish. Thus far, dreaming seems to have always resided in the periphery of science, never regarded worth to be studied by the mainstream. Nevertheless, when brought to the spotlight, the study of dreaming can greatly benefit from ideas in diverse branches of science. Vice versa, knowledge learned from the study of dreaming can be applied in various disciplines. The main contribution of the present thesis lies in putting dreaming back where it belongs, that is, into the spotlight in the cross-road of various disciplines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A physical model for the simulation of x-ray emission spectra from samples irradiated with kilovolt electron beams is proposed. Inner shell ionization by electron impact is described by means of total cross sections evaluated from an optical-data model. A double differential cross section is proposed for bremsstrahlung emission, which reproduces the radiative stopping powers derived from the partial wave calculations of Kissel, Quarles and Pratt [At. Data Nucl. Data Tables 28, 381 (1983)]. These ionization and radiative cross sections have been introduced into a general-purpose Monte Carlo code, which performs simulation of coupled electron and photon transport for arbitrary materials. To improve the efficiency of the simulation, interaction forcing, a variance reduction technique, has been applied for both ionizing collisions and radiative events. The reliability of simulated x-ray spectra is analyzed by comparing simulation results with electron probe measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a general algorithm for the simulation of x-ray spectra emitted from targets of arbitrary composition bombarded with kilovolt electron beams. Electron and photon transport is simulated by means of the general-purpose Monte Carlo code PENELOPE, using the standard, detailed simulation scheme. Bremsstrahlung emission is described by using a recently proposed algorithm, in which the energy of emitted photons is sampled from numerical cross-section tables, while the angular distribution of the photons is represented by an analytical expression with parameters determined by fitting benchmark shape functions obtained from partial-wave calculations. Ionization of K and L shells by electron impact is accounted for by means of ionization cross sections calculated from the distorted-wave Born approximation. The relaxation of the excited atoms following the ionization of an inner shell, which proceeds through emission of characteristic x rays and Auger electrons, is simulated until all vacancies have migrated to M and outer shells. For comparison, measurements of x-ray emission spectra generated by 20 keV electrons impinging normally on multiple bulk targets of pure elements, which span the periodic system, have been performed using an electron microprobe. Simulation results are shown to be in close agreement with these measurements.