913 resultados para distributed computing
Resumo:
In the past few years there have been attempts to develop subspace methods for DoA (direction of arrival) estimation using a fourth?order cumulant which is known to de?emphasize Gaussian background noise. To gauge the relative performance of the cumulant MUSIC (MUltiple SIgnal Classification) (c?MUSIC) and the standard MUSIC, based on the covariance function, an extensive numerical study has been carried out, where a narrow?band signal source has been considered and Gaussian noise sources, which produce a spatially correlated background noise, have been distributed. These simulations indicate that, even though the cumulant approach is capable of de?emphasizing the Gaussian noise, both bias and variance of the DoA estimates are higher than those for MUSIC. To achieve comparable results the cumulant approach requires much larger data, three to ten times that for MUSIC, depending upon the number of sources and how close they are. This is attributed to the fact that in the estimation of the cumulant, an average of a product of four random variables is needed to make an evaluation. Therefore, compared to those in the evaluation of the covariance function, there are more cross terms which do not go to zero unless the data length is very large. It is felt that these cross terms contribute to the large bias and variance observed in c?MUSIC. However, the ability to de?emphasize Gaussian noise, white or colored, is of great significance since the standard MUSIC fails when there is colored background noise. Through simulation it is shown that c?MUSIC does yield good results, but only at the cost of more data.
Resumo:
Analytical and numerical solutions have been obtained for some moving boundary problems associated with Joule heating and distributed absorption of oxygen in tissues. Several questions have been examined which are concerned with the solutions of classical formulation of sharp melting front model and the classical enthalpy formulation in which solid, liquid and mushy regions are present. Thermal properties and heat sources in the solid and liquid regions have been taken as unequal. The short-time analytical solutions presented here provide useful information. An effective numerical scheme has been proposed which is accurate and simple.
Resumo:
The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.
Resumo:
The steady state throughput performance of distributed applications deployed in switched networks in presence of end-system bottlenecks is studied in this paper. The effect of various limitations at an end-system is modelled as an equivalent transmission capacity limitation. A class of distributed applications is characterised by a static traffic distribution matrix that determines the communication between various components of the application. It is found that uniqueness of steady state throughputs depends only on the traffic distribution matrix and that some applications (e.g., broadcast applications) can yield non-unique values for the steady state component throughputs. For a given switch capacity, with traffic distribution that yield fair unique throughputs, the trade-off between the end-system capacity and the number of application components is brought out. With a proposed distributed rate control, it has been illustrated that it is possible to have unique solution for certain traffic distributions which is otherwise impossible. Also, by proper selection of rate control parameters, various throughput performance objectives can be realised.
Resumo:
In this paper, we propose a new fault-tolerant distributed deadlock detection algorithm which can handle loss of any resource release message. It is based on a token-based distributed mutual exclusion algorithm. We have evaluated and compared the performance of the proposed algorithm with two other algorithms which belong to two different classes, using simulation studies. The proposed algorithm is found to be efficient in terms of average number of messages per wait and average deadlock duration compared to the other two algorithms in all situations, and has comparable or better performance in terms of other parameters.
Resumo:
We consider the problem of wireless channel allocation to multiple users. A slot is given to a user with a highest metric (e.g., channel gain) in that slot. The scheduler may not know the channel states of all the users at the beginning of each slot. In this scenario opportunistic splitting is an attractive solution. However this algorithm requires that the metrics of different users form independent, identically distributed (iid) sequences with same distribution and that their distribution and number be known to the scheduler. This limits the usefulness of opportunistic splitting. In this paper we develop a parametric version of this algorithm. The optimal parameters of the algorithm are learnt online through a stochastic approximation scheme. Our algorithm does not require the metrics of different users to have the same distribution. The statistics of these metrics and the number of users can be unknown and also vary with time. Each metric sequence can be Markov. We prove the convergence of the algorithm and show its utility by scheduling the channel to maximize its throughput while satisfying some fairness and/or quality of service constraints.
Resumo:
Recently, a special class of complex designs called Training-Embedded Complex Orthogonal Designs (TE-CODs) has been introduced to construct single-symbol Maximum Likelihood decodable (SSD) distributed space-time block codes (DSTBCs) for two-hop wireless relay networks using the amplify and forward protocol. However, to implement DSTBCs from square TE-CODs, the overhead due to the transmission of training symbols becomes prohibitively large as the number of relays increase. In this paper, we propose TE-Coordinate Interleaved Orthogonal Designs (TE-CIODs) to construct SSD DSTBCs. Exploiting the block diagonal structure of TE-CIODs, we show that the overhead due to the transmission of training symbols to implement DSTBCs from TE-CIODs is smaller than that for TE-CODs. We also show that DSTBCs from TE-CIODs offer higher rate than those from TE-CODs for identical number of relays while maintaining the SSD and full-diversity properties.
Resumo:
In this paper, we propose a new token-based distributed algorithm for total order atomic broadcast. We have shown that the proposed algorithm requires lesser number of messages compared to the algorithm where broadcast servers use unicasting to send messages to other broadcast servers. The traditional method of broadcasting requires 3(N - 1) messages to broadcast an application message, where N is the number of broadcast servers present in the system. In this algorithm, the maximum number of token messages required to broadcast an application message is 2N. For a heavily loaded system, the average number of token messages required to broadcast an application message reduces to 2, which is a substantial improvement over the traditional broadcasting approach.
Resumo:
We develop an optimal, distributed, and low feedback timer-based selection scheme to enable next generation rate-adaptive wireless systems to exploit multi-user diversity. In our scheme, each user sets a timer depending on its signal to noise ratio (SNR) and transmits a small packet to identify itself when its timer expires. When the SNR-to-timer mapping is monotone non-decreasing, timers of users with better SNRs expire earlier. Thus, the base station (BS) simply selects the first user whose timer expiry it can detect, and transmits data to it at as high a rate as reliably possible. However, timers that expire too close to one another cannot be detected by the BS due to collisions. We characterize in detail the structure of the SNR-to-timer mapping that optimally handles these collisions to maximize the average data rate. We prove that the optimal timer values take only a discrete set of values, and that the rate adaptation policy strongly influences the optimal scheme's structure. The optimal average rate is very close to that of ideal selection in which the BS always selects highest rate user, and is much higher than that of the popular, but ad hoc, timer schemes considered in the literature.
Resumo:
A distributed storage setting is considered where a file of size B is to be stored across n storage nodes. A data collector should be able to reconstruct the entire data by downloading the symbols stored in any k nodes. When a node fails, it is replaced by a new node by downloading data from some of the existing nodes. The amount of download is termed as repair bandwidth. One way to implement such a system is to store one fragment of an (n, k) MDS code in each node, in which case the repair bandwidth is B. Since repair of a failed node consumes network bandwidth, codes reducing repair bandwidth are of great interest. Most of the recent work in this area focuses on reducing the repair bandwidth of a set of k nodes which store the data in uncoded form, while the reduction in the repair bandwidth of the remaining nodes is only marginal. In this paper, we present an explicit code which reduces the repair bandwidth for all the nodes to approximately B/2. To the best of our knowledge, this is the first explicit code which reduces the repair bandwidth of all the nodes for all feasible values of the system parameters.
Resumo:
We consider the problem of minimizing the bandwidth required to repair a failed node when data is stored across n nodes in a distributed manner, so as to facilitate reconstruction of the entire data by connecting to any k out of the n nodes. We provide explicit and optimal constructions which permit exact replication of a failed systematic node.
Resumo:
A scheme to apply the rate-1 real orthogonal designs (RODs) in relay networks with single real-symbol decodability of the symbols at the destination for any arbitrary number of relays is proposed. In the case where the relays do not have any information about the channel gains from the source to themselves, the best known distributed space time block codes (DSTBCs) for k relays with single real-symbol decodability offer an overall rate of complex symbols per channel use. The scheme proposed in this paper offers an overall rate of 2/2+k complex symbol per channel use, which is independent of the number of relays. Furthermore, in the scenario where the relays have partial channel information in the form of channel phase knowledge, the best known DSTBCs with single real-symbol decodability offer an overall rate of 1/3 complex symbols per channel use. In this paper, making use of RODs, a scheme which achieves the same overall rate of 1/3 complex symbols per channel use but with a decoding delay that is 50 percent of that of the best known DSTBCs, is presented. Simulation results of the symbol error rate performance for 10 relays, which show the superiority of the proposed scheme over the best known DSTBC for 10 relays with single real-symbol decodability, are provided.
Resumo:
In this paper, we outline an approach to the task of designing network codes in a non-multicast setting. Our approach makes use of the concept of interference alignment. As an example, we consider the distributed storage problem where the data is stored across the network in n nodes and where a data collector can recover the data by connecting to any k of the n nodes and where furthermore, upon failure of a node, a new node can replicate the data stored in the failed node while minimizing the repair bandwidth.